閱讀下面的材料:
小明在學習中遇到這樣一個問題:若1≤xm,求二次函數(shù)的最大值.他畫圖研究后發(fā)現(xiàn),時的函數(shù)值相等,于是他認為需要對進行分類討論.
他的解答過程如下:
∵二次函數(shù)的對稱軸為直線
∴由對稱性可知,時的函數(shù)值相等.
∴若1≤m<5,則時,的最大值為2;
m≥5,則時,的最大值為

請你參考小明的思路,解答下列問題:
(1)當x≤4時,二次函數(shù)的最大值為_______;
(2)若px≤2,求二次函數(shù)的最大值;
(3)若txt+2時,二次函數(shù)的最大值為31,則的值為_______.
(1)y="49" (2)y="2p2+4p+1" 或17 (3)t=1或t=-5.

試題分析:(1) ∵y=2x2+4x+1∴y=2(x+1)2-1. ∴對稱軸x="-1,又-2≤x≤4時,y的最大值,當x=4時,y有最大值為49.(2)∵P≤x≤2" 由于二次函數(shù)具有對稱性,當x=2與x=-4時,函數(shù)值相等,而x=-1時,y有最小值,是因為a﹥0,圖像開口向上!喈攑≤-4,x=p時,y有最大值,y=2p2+4P+1.當-4﹤p≤2,x="2時,y有最大值" y="17.(3)當t≥-1,x=t+2時,y有最大值,即2(t+2" )2+4(t+2)+1=31  (t+7)(t-1)="0" ∴t1="1" t2="-7(舍去)" 當t﹤-1,x=t時,y有最大值,即2t2+4t+1="0" (t+5)(t-3)="0" t1="-5" t2=3(舍去)。∴t=1或t=-5解:(1)當時,二次函數(shù)的最大值為 49 ;  ……    1分
(2)∵二次函數(shù)的對稱軸為直線,
∴由對稱性可知,當時函數(shù)值相等.
∴若,則當時,的最大值為.  .................... 2分
,則當時,的最大值為17.  ............................. 3分
(3)的值為 .  .................................................. 5分
閱卷說明:只寫或只寫得1分;有錯解得0分.
點評:本題是難題,難點在于當自變量x的取值范圍內(nèi)要考慮到對稱軸的關系,需要討論。此題還可以依據(jù)函數(shù)的單調(diào)性來討論,即是在對稱軸為準,自變量x在那個范圍上是y隨著x的增大而增大,即為增函數(shù),反之,減函數(shù)。由此得到函數(shù)的最值。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

若函數(shù),則當函數(shù)值時,自變量的值是( )
A.± B.4 C.±或4  D.4或-

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線
(1) 求證:無論為任何實數(shù),拋物線與軸總有兩個交點;
(2) 若A、B是拋物線上的兩個不同點,求拋物線的解析式和的值;
(3) 若反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標為,且滿足2<<3,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=ax2+bx+c的頂點坐標是(-1,3),且過點(0,5),那么二次函數(shù)y=ax2+bx+c的解析式為
A.y=-2x2+4x+5B.y=2x2+4x+5
C.y=-2x2+4x-1D.y=2x2+4x+3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
某商店經(jīng)銷一批小家電,每個小家電的成本為40元。據(jù)市場分析,銷售單價定為50元時,一個月能售出500件;若銷售單價每漲1元,月銷售量就減少10件.針對這種小家電的銷售情況,請回答以下問題:
(1)設銷售單價定為x元(x>50),月銷售利潤為y元,求y(用含x的代數(shù)式表示);
(2)現(xiàn)該商店要保證每月盈利8750元,同時又要使顧客得到盡可能多的實惠,那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的最小值是
A.B.1C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則下列式子中①;②;③; ④成立的個數(shù)有(     ) 
A.1個B.2個C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

對于每個非零自然數(shù),拋物線軸交于兩點,以表示這兩點間的距離,則的值是(        )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

己知關于的二次函數(shù)的圖象經(jīng)過原點,則=           .

查看答案和解析>>

同步練習冊答案