如圖,在△ABC中,∠A=90°,AB=AC,直線l經(jīng)過點A,BE⊥l于E,CF⊥l于F,
求證:BE+CF=EF.

【答案】分析:首先根據(jù)題意尋找可以證明△AEB≌△CFA的條件,再利用全等三角形的性質(zhì)可以得到AE=CF,BE=AF,進而得到EF=AF+AE=CF+BE.
解答:證明:∵BE⊥l,CF⊥l,
∴∠AEB=∠CFA=90°.
∴∠EAB+∠EBA=90°.
又∵∠BAC=90°,
∴∠EAB+∠CAF=90°.
∴∠EBA=∠CAF.
在△AEB和△CFA中:
∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,
∴△AEB≌△CFA,
∴AE=CF,BE=AF,
∴EF=AF+AE=CF+BE.
點評:此題主要考查了三角形全等的判定及性質(zhì),解決問題的關(guān)鍵是證明△AEB≌△CFA.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案