【題目】某商店用1000元購進某種水果銷售,過了一段時間,又用2400元購進這種水果,所購數(shù)量是第一次購進數(shù)量的2倍,但每千克的價格比第一次貴了2元.
(1)該商店第一次購進水果多少千克?
(2)已知該水果的日銷售量(千克)與售價(元)是一次函數(shù)關(guān)系.若售價為13元,則每天可以賣出50千克;若售價為15元,則每天可以賣出40千克.求與之間的函數(shù)表達式.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點D,過點D作DEAC分別交AC、AB的延長線于點E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點和的直線交拋物線的對稱軸于點.
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.
(3)若點在拋物線上,點在軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,正方形ABCD的邊長為4,取AB邊上的中點E,連接CE,過點B作BF⊥CE于點F,連接DF.過點A作AH⊥DF于點H,交CE于點M,交BC于點N,則MN=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側(cè).
(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=8,BC=6,點P從點B出發(fā)以1個單位/s的速度向點A運動,同時點Q從點C出發(fā)以2個單位/s的速度向點B運動.當以B,P,Q為頂點的三角形與△ABC相似時,運動時間為( 。
A.sB.sC.s或sD.以上均不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對稱軸為直線x=2,若關(guān)于x的一元二次方程﹣x2+mx﹣t=0(t為實數(shù))在1<x<5的范圍內(nèi)有解,則t的取值范圍是( )
A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全校學生上學的交通方式,該校九年級(8)班的5名同學聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項,要求被調(diào)查同學從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學中有2名女同學,要從中選兩名同學匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為貫徹落實《中華人民共和國河道管理條例》,對轄區(qū)內(nèi)河道阻水障礙物進行清理.甲、乙兩個工程隊共同承包此項清理工程,甲隊單獨施工完成此項工程比乙隊單獨施工完成此項工程多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項工程各需多少天?
(2)若由甲隊先施工天,再由甲、乙兩隊共同施工天,正好完成該工程,請直接寫出與之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若每天需支付甲隊費用1000元,每天需支付乙隊費用2000元,且完成工作總天數(shù)不超過24天,則如何安排甲隊先施工天數(shù),使總施工費用最少,并求出最少費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com