【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動點(diǎn),且AE=DF,CF所在直線與對角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.
(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
【答案】(1)證明見解析(2)AG⊥BE(3)證明見解析
【解析】
(1)根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;
(2)根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90°,根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判斷AG⊥BE;
(3)如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立.
(1)證明:∵四邊形ABCD為正方形,
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
(2)解:AG⊥BE.理由如下:
∵四邊形ABCD為正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(3)解:由(2)可知AG⊥BE.
如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,則四邊形OMHN為矩形.
∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON與△BOM中,
,
∴△AON≌△BOM(AAS).
∴OM=ON,
∴矩形OMHN為正方形,
∴HO平分∠BHG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售國外、國內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如表所示
國外品牌 | 國內(nèi)品牌 | |
進(jìn)價(萬元/部) | 0.44 | 0.2 |
售價(萬元/部) | 0.5 | 0.25 |
該商場計劃購進(jìn)兩種手機(jī)若干部,共需14.8萬元,預(yù)計全部銷售后可獲毛利潤共2.7萬元.[毛利潤=(售價﹣進(jìn)價)×銷售量]
(1)該商場計劃購進(jìn)國外品牌、國內(nèi)品牌兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少國外品牌手機(jī)的購進(jìn)數(shù)量,增加國內(nèi)品牌手機(jī)的購進(jìn)數(shù)量.已知國內(nèi)品牌手機(jī)增加的數(shù)量是國外品牌手機(jī)減少的數(shù)量的3倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過15.6萬元,該商場應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)A與A1,點(diǎn)B與B1,點(diǎn)C與C1分別是對應(yīng)點(diǎn),觀察各對應(yīng)點(diǎn)坐標(biāo)之間的關(guān)系,解答下列問題:
(1)分別寫出點(diǎn)A與A1,點(diǎn)B與B1,點(diǎn)C與C1的坐標(biāo);
(2)若點(diǎn)P(x,y)通過上述的平移規(guī)律平移得到的對應(yīng)點(diǎn)為Q(3,5),求p點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,解答問題
例題:已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.
解:設(shè)另一個因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個因式為(x﹣7),m的值為﹣21.
問題:
(1)若二次三項式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問題:若二次三項式2x2+3x﹣k有一個因式是(2x﹣5),求另一個因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD對角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說明你的理由;
(2)求證:EO=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (k≠0)的圖象經(jīng)過(3,﹣1),則當(dāng)1<y<3時,自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗的結(jié)果.
下面有三個推斷:
①當(dāng)投擲次數(shù)是500時,計算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機(jī)模擬實(shí)驗,則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著。書中有下列問題“今有勾八步,股十五步。問勾中容圓徑幾何?”其意思為今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是步。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省泰安市)某學(xué)校將為初一學(xué)生開設(shè)ABCDEF共6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了“我最喜歡的一門選修課”調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表(不完整)
根據(jù)圖表提供的信息,下列結(jié)論錯誤的是( )
A. 這次被調(diào)查的學(xué)生人數(shù)為400人
B. 扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C. 被調(diào)查的學(xué)生中喜歡選修課E、F的人數(shù)分別為80,70
D. 喜歡選修課C的人數(shù)最少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com