【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EF=,求AF長.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯(cuò)角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;
(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應(yīng)邊相等即可得出CD=HF;
(3)先證得△EHF∽△BEF,根據(jù)相似三角形的性質(zhì)求得BF=10,進(jìn)而根據(jù)直角三角形斜邊中線的性質(zhì)求得OE=5,進(jìn)一步求得OH,然后解直角三角形即可求得OA,得出AF.
證明:(1)如圖1,連接OE.
∵BE⊥EF,
∴∠BEF=90°,
∴BF是圓O的直徑.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE//BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切線;
(2)解:如圖2,連結(jié)DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE與△HFE中,,
∴△CDE≌△HFE(AAS),
∴CD=HF.
(3)解:由(2)得CD=HF,又CD=1,
∴HF=1,
∵EF⊥BE,
∴∠BEF=90°,
∴∠EHF=∠BEF=90°,
∵∠EFH=∠BFE,
∴△EHF∽△BEF,
∴,即,
∴BF=10,
∴OE=BF=5,OH=5-1=4,
∴Rt△OHE中,cos∠EOA=,
∴Rt△EOA中,cos∠EOA=,
∴,
∴OA=,
∴AF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)中共中央決定設(shè)立河北雄安新區(qū),這一重大措施必將帶動(dòng)首都及周邊區(qū)域向更高水平發(fā)展,同時(shí)也會(huì)帶來更多商機(jī).某水果經(jīng)銷商在第一周購進(jìn)一批水果1160件,預(yù)計(jì)在第二周進(jìn)行試銷,購進(jìn)價(jià)格為每件10元,若售價(jià)為每件12元,則可全部售出;若售價(jià)每漲價(jià)0.1元,銷量就減少2件.
(1)若該經(jīng)銷商在第二周的銷量不低于1100件,則售價(jià)應(yīng)不高于多少元?
(2)由于銷量較好,第三周水果進(jìn)價(jià)比第一周每件增加了20%,該經(jīng)銷商增加了進(jìn)貨量,并加強(qiáng)了宣傳力度,結(jié)果第三周的銷量比第二周在(1)條件下的最低銷量增加了m%,但售價(jià)比第二周在(1)條件下的最高售價(jià)減少了m%,結(jié)果第三周利潤達(dá)到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃購進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:
商品 | 甲 | 乙 |
進(jìn)價(jià)(元/件) | x60 | x |
售價(jià)(元/件) | 200 | 100 |
若用1800元購進(jìn)甲種商品的件數(shù)與用900元購進(jìn)乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?
(2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設(shè)銷售完100件甲、乙兩種商品的總利潤為w元,求w與a之間的函數(shù)關(guān)系式,并求出w的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,過點(diǎn)B作直線EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.
(1)請?zhí)骄?/span>EF與⊙O的位置關(guān)系,并說明理由;
(2)求⊙O的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交雙曲線于點(diǎn)B,直線AB與y軸相交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時(shí)自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,RtΔABC中∠C=90°,∠ABC=30°,ΔABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得ΔA1B1C,當(dāng)A1落在AB上時(shí),連接B1B,取B1B的中點(diǎn)D,連接A1D,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P是平面直角坐標(biāo)系中第一象限內(nèi)一點(diǎn),過點(diǎn)P作PA⊥x軸于點(diǎn)A,以AP為邊在右側(cè)作等邊△APQ,已知點(diǎn)Q的縱坐標(biāo)為2,連結(jié)OQ交AP于B,BQ=3OB.
(1)求點(diǎn)P的坐標(biāo);
(2)如圖2,若過點(diǎn)P的雙曲線(k>0)與過點(diǎn)Q垂直于x軸的直線交于D,連接PD.求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)為了獎(jiǎng)勵(lì)在學(xué)!对娫~大會(huì)》上獲獎(jiǎng)的同學(xué),計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.
(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)650元,求甲、乙兩種獎(jiǎng)品各購買了多少件.
(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求學(xué)校有幾種不同的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過點(diǎn)A(0,6),點(diǎn)B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點(diǎn)P,且l1與l2相交于點(diǎn)C,直線l2與x軸、y軸分別交于點(diǎn)D、E.若把拋物線上下平移,使拋物線的頂點(diǎn)在直線l2上(此時(shí)拋物線的頂點(diǎn)記為M),再把拋物線左右平移,使拋物線的頂點(diǎn)在直線l1上(此時(shí)拋物線的頂點(diǎn)記為N).
(1)求拋物y=x2+bx+c線的解析式.
(2)判斷以點(diǎn)N為圓心,半徑長為4的圓與直線l2的位置關(guān)系,并說明理由.
(3)設(shè)點(diǎn)F、H在直線l1上(點(diǎn)H在點(diǎn)F的下方),當(dāng)△MHF與△OAB相似時(shí),求點(diǎn)F、H的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com