【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADE和DCF,連接AF,BE.
(Ⅰ)請寫出AF與BE的數(shù)量關系與位置關系分別是什么,并證明.
(Ⅱ)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)閮蓚等腰三角形ADE和DCF,且EA=ED=FD=FC,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;

【答案】試題
【解析】(Ⅰ)AF=BE,AF⊥BE. 證明參考(Ⅱ)
(Ⅱ)結論成立.

證明:∵四邊形ABCD是正方形,
∴BA=AD =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(Ⅰ)根據(jù)SAS易證△ADE≌△DCF,即可證明AF與BE的數(shù)量關系是AF=BE,位置關系是AF⊥BE; (Ⅱ)成立,證明△ADE≌△DCF,然后證明△ABE≌△ADF即可證得BE=AF,然后根據(jù)三角形內角和定理證明∠AMB=90°,從而結論得證.
【考點精析】關于本題考查的三角形的內角和外角,需要了解三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一副三角板如圖疊放在一起,則圖中∠α的度數(shù)為(
A.75°
B.60°
C.65°
D.55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面四個有理數(shù)﹣5,﹣2,0,3中,最大的是( 。

A. ﹣5 B. ﹣2 C. 0 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于數(shù)據(jù)3,3,2,3,6,3,10,3,6,3,2.①這組數(shù)據(jù)的眾數(shù)是3;②這組數(shù)據(jù)的眾數(shù)與中位數(shù)的數(shù)值不等;③這組數(shù)據(jù)的中位數(shù)與平均數(shù)的數(shù)值相等;④這組數(shù)據(jù)的平均數(shù)與眾數(shù)的數(shù)值相等,其中正確的結論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足(a+b)2+|a﹣b+4|=0,過C作CB⊥x軸于B.

(1)求三角形ABC的面積.
(2)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,求∠AED的度數(shù).

(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)
(2)
(3)( )×(﹣30)
(4)
(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《一千零一夜》中有這樣一段文字:有一群鴿子,其中一部分在樹上歡歌,另一部分在地上覓食,樹上的一只鴿子對地上的覓食的鴿子說:“若從你們中飛上來一只,則樹下的鴿子就是整個鴿群的 ;若從樹上飛下去一只,則樹上、樹下的鴿子有一樣多了.”你知道樹上、樹下各有多少只鴿子嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式a3+4a2b+4ab2______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線)交x軸于A、B兩點,交y軸于點C,且對稱軸為直線x=―2 .

(1)求該拋物線的解析式及頂點D的坐標;

(2)若點P(0,t)是y軸上的一個動點,請進行如下探究:

探究一:如圖1,設△PAD的面積為S,令Wt·S,當0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、A、D為頂點的三角形與RtAOC相似?如果存在,求點P的坐標;如果不存在,請說明理由.

圖1 圖2

查看答案和解析>>

同步練習冊答案