如圖,梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上的一點P,若EF=5cm,則梯形ABCD的周長為      cm.
20

試題分析:梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上的一點P,;∵AD//BC∴,∴,∴BE=EP,CF=PF,∵EF="EP+PF" ∴BE+CF=EF=5;EF是梯形ABCD的中位線,所以AD+BC=EF;AB+CD=2(BE+CF),梯形ABCD的周長="AD+BC+" AB+CD=20
點評:本題考查梯形中位線和角平分線,解本題的關(guān)鍵是掌握梯形中位線的概念和角平分線的性質(zhì)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,是由正八邊形與正方形構(gòu)成的組合圖案,圖中陰影部分為植草區(qū)域,若正八邊形與其內(nèi)部小正方形的邊長都為a,則植草區(qū)域的面積為(圖中陰影部分的面積)
A.2a2B.3a2C.4a2D.5a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列矩形都是由大小不等的正方形按照一定規(guī)律組成,其中,第①個矩形的周長為6,第②個矩形的周長為10,第③個矩形的周長為16,…則第⑥個矩形的周長為(   。

①      ②      ③         ④
A.42B.46 C.68D.72

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在□ABCD中,已知,,則用向量、表示向量         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把一個長方形紙片沿折疊后,點DC分別落在D′,C′的位置.若=70°,則= _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,順次連接菱形的各邊中點、、.若,則四邊形的面積是             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

【問題】如圖,在正方形ABCD內(nèi)有一點P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點,我們可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點B逆時針旋轉(zhuǎn)90°,得到了△BP′A(如圖),然后連結(jié)PP′.
解決問題請你通過計算求出圖17-2中∠BPC的度數(shù);
【類比研究】如圖,若在正六邊形ABCDEF內(nèi)有一點P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為       ;(2)直接寫出正六邊形ABCDEF的邊長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形ABCD的周長為12,E、F、G、H為矩形ABCD的各邊中點,若AB=x,四邊形EFGH的面積為y.

(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計算當(dāng)x為何值時,y最大,并求出最大值.
(參考公式:當(dāng)x=-時,二次函數(shù)y=ax+bx+c(a≠o)有最小(大)值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形中,對角線相交于點 ,則的長是(      )
A.B.C.5D.10

查看答案和解析>>

同步練習(xí)冊答案