【題目】如圖①,在矩形 ABCD中,AB=10cm,BC=8cm.點P從A出發(fā),沿A→B→C→D路線運動,到D停止;點Q從D出發(fā),沿 D→C→B→A路線運動,到A停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵?/span>bcm,點Q的速度變?yōu)槊棵?/span>dcm.圖②是點P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.
(1)、參照圖象,求b、圖②中c及d的值;
(2)、連接PQ,當(dāng)PQ平分矩形ABCD的面積時,運動時間x的值為 ;
(3)、當(dāng)兩點改變速度后,設(shè)點P、Q在運動線路上相距的路程為y(cm),求y(cm)與運動時間x(秒)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)、若點P、點Q在運動路線上相距的路程為25cm,求x的值.
【答案】(1)、b=2;C=17;d=1;(2)、;(3)、當(dāng)6<x≤時,y=28-3x; 當(dāng)<x≤17時,y=3x-28;當(dāng)17<x≤22時,y=x+6;(4)、1秒或19秒.
【解析】
試題分析:(1)、首先根三角形面積求出a的值,然后得出b、c、d的值;(2)、平分面積則說明PQ經(jīng)過四邊形對角線的交點,然后根據(jù)性質(zhì)求出x的值;(3)、利用待定系數(shù)法分6<x≤,<x≤17和17<x≤22三種情況分別求出函數(shù)解析式;(4)、分別根據(jù)改變速度前和改變速度后兩種情況列出一元一次方程,從而求出x的值.
試題解析:(1)、觀察圖②得S△APD=PAAD=×a×8=24, ∴a=6(秒),
(厘米/秒), (秒);
(22﹣6)d=28﹣12, 解得d=1(厘米/秒);
(2)、
(3)、當(dāng)6<x≤時,y=28-3x 當(dāng)<x≤17時,y=3x-28 當(dāng)17<x≤22時,y=x+6
(4)、改變速度前,28-3x=25,x=1 改變速度后,x+6=25,x=19
∴當(dāng)點Q出發(fā)1或19秒時,點P、點Q在運動路線上相距的路程為25cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形具有而菱形不具有的性質(zhì)是( )
A.對角線相等 B.兩組對邊分別平行
C.對角線互相平分 D.兩組對角分別相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某學(xué)校學(xué)生的個性特長發(fā)展情況,在全校范圍內(nèi)隨機抽查了部分學(xué)生參加音樂、體育、美術(shù)、書法等活動項目(每人只限一項)的情況.并將所得數(shù)據(jù)進行了統(tǒng)計,結(jié)果如圖所示.
(1)求在這次調(diào)查中,一共抽查了多少名學(xué)生;
(2)求出扇形統(tǒng)計圖中參加“音樂”活動項目所對扇形的圓心角的度數(shù);
(3)若該校有2400名學(xué)生,請估計該校參加“美術(shù)”活動項目的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過第2016次操作后得到的折痕D2015E2015到BC的距離記為h2016,到BC的距離記為h2016.若h1=1,則h2016的值為( )
A. B.1﹣ C. D.2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,
∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l是經(jīng)過點(1,0)且與y軸平行的直線.Rt△ABC中直角邊AC=4,BC=3.將BC邊在直線l上滑動,使A,B在函數(shù)的圖象上.那么k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠1與∠2是一組平行線被第三條直線所截的同旁內(nèi)角,若∠1=50°,則( )
A. ∠2=50° B. ∠2=130° C. ∠2=50°或∠2=130° D. ∠2的大小不一定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com