如圖甲,正方形ABCD的邊長(zhǎng)為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至M,C),以AB為直徑作⊙O,過(guò)點(diǎn)P的切線交AD于點(diǎn)F,切點(diǎn)為E.
(1)求四邊形CDFP的周長(zhǎng);
(2)請(qǐng)連接OF,OP,求證:OF⊥OP;
(3)延長(zhǎng)DC,F(xiàn)P相交于點(diǎn)G,連接OE并延長(zhǎng)交直線DC于H(如圖乙).是否存在點(diǎn)P使△EFO∽△EHG(其對(duì)應(yīng)關(guān)系是E←→E,F(xiàn)←→H,O←→G)?如果存在,試求此時(shí)的BP的長(zhǎng);如果不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.
分析:(1)由ABCD為正方形,得到∠A與∠B都為直角,根據(jù)切線的判斷方法,得到AD與BC都為圓的切線,又PF為圓O的切線,根據(jù)切線長(zhǎng)定理即可得到FE=FA,PE=PB,根據(jù)等量代換的方法得到四邊形CDFP的周長(zhǎng)等于AD+BC+CD,根據(jù)正方形的邊長(zhǎng)為2,求出周長(zhǎng)即可;
(2)連接OF,OP,OE,由AF,BP是⊙O的切線,PF是⊙O的切線,根據(jù)切線長(zhǎng)定理即可得∠EOF=∠AOF,∠EOP=∠BOP,又由∠AOF+∠EOF+∠EOP+∠BOP=180°,即可證得OF⊥OP;
(3)存在.理由是:當(dāng)Rt△EFO∽R(shí)t△EHG時(shí),必須使∠EHG=∠EFO,而根據(jù)平行得到∠EHG=∠EOA=2∠EOF,即∠EFO=2∠EOF,又因?yàn)椤螰EO為90°,所以∠EOF=∠AOF=30°,根據(jù)30°的正切值求出AF的長(zhǎng)即為y的值,然后代入(2)中的函數(shù)關(guān)系式即可求出x的值.
解答:(1)解:∵四邊形ABCD是正方形,
∴∠A=∠B=90°,
∴AF,BP是⊙O的切線,
又∵PF是⊙O的切線,
∴FE=FA,PE=PB,
∴四邊形CDFP的周長(zhǎng)為:CD+DF+EF+CP=AD+DC+CB=6;

(2)證明:連接OF,OP,OE,
∵AF,BP是⊙O的切線,PF是⊙O的切線
∴∠EOF=∠AOF,∠EOP=∠BOP,精英家教網(wǎng)
∵∠AOF+∠EOF+∠EOP+∠BOP=180°,
∴2∠FOE+2∠EOP=180°,
∴∠EOF+∠EOP=90°,
∴OF⊥OP;

(3)解:存在.理由如下:
∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
當(dāng)∠EFO=∠EHG=2∠EOF時(shí),即∠EOF=30°時(shí),Rt△EFO∽R(shí)t△EHG,
設(shè)AF=y,BP=x,
此時(shí)在Rt△AFO中,
y=AF=OA•tan30°=
3
3
,
即x=
1
y
=
3

解得:x=
3
 ,y=
3
3
,
∴當(dāng) x=
3
,y=
3
3
時(shí),△EFO∽△EHG.
點(diǎn)評(píng):此題綜合考查了切線長(zhǎng)定理,切線的性質(zhì),相似三角形的判定與性質(zhì)以及正方形的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF,BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C,F(xiàn)重合除外)畫(huà)出相應(yīng)圖形,并說(shuō)明理由.(畫(huà)圖不寫(xiě)作法)
(3)若AC=4
2
,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:
精英家教網(wǎng)
(1)如果AB=AC,∠BAC=90度.
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立為什么(要求寫(xiě)出證明過(guò)程)
(2)如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng).且∠BCA=45°時(shí),
①請(qǐng)你判斷線段CF、BD之間的位置關(guān)系,并說(shuō)明理由(要求寫(xiě)出證明過(guò)程).
②若AC=4
2
,CF=3.求正方形ADEF的邊長(zhǎng)(要求寫(xiě)出計(jì)算過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為
垂直
,數(shù)量關(guān)系為
相等

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點(diǎn)D在線段BC上運(yùn)動(dòng).試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列問(wèn)題:
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
垂直
垂直
,數(shù)量關(guān)系為
相等
相等

(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立,為什么?(要求寫(xiě)出證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)
如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
解答下列問(wèn)題:
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為     ,數(shù)量關(guān)系為     
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立,為什么?(要求寫(xiě)出證明過(guò)程)
(2)如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng).且∠BCA=45°時(shí),如圖丙請(qǐng)你判斷線段CF、BD之間的位置關(guān)系,并說(shuō)明理由(要求寫(xiě)出證明過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案