精英家教網 > 初中數學 > 題目詳情

【題目】如圖的宣傳單為某印刷公司設計與印刷卡片計價方式的說明,小娜打算請此印刷公司設計一款母親節(jié)卡片并印刷,她再將卡片以每張15元的價格販售.若利潤等于收入扣掉成本,且成本只考慮設計費與印刷費,則她至少需印多少張卡片,才可使得卡片全數售出后的利潤超過成本的20%?

【答案】小娜至少需印134張卡片,才可使得卡片全數售出后的利潤超過成本的20%.

【解析】

設小娜需印x張卡片,根據利潤=收入-成本結合利潤超過成本的2成,即可得出關于x的一元一次不等式,解之即可得出x的取值范圍,取最小的整數即可得出結論.

解:設小娜需印x張卡片,

根據題意得:15x10005x0.21000+5x),

解得:x133

x為整數,

∴小娜至少需印134張卡片.

答:小娜至少需印134張卡片,才可使得卡片全數售出后的利潤超過成本的20%

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在RtACB中,ACB=90°,AC=3,BC=4,有一過點C的動圓O與斜邊AB相切于動點P,連接CP.

(1)當O與直角邊AC相切時,如圖2所示,求此時O的半徑r的長;

(2)隨著切點P的位置不同,弦CP的長也會發(fā)生變化,試求出弦CP的長的取值范圍.

(3)當切點P在何處時,O的半徑r有最大值?試求出這個最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3E,F 分別是AB,BC邊上的點,且∠EDF=45°.△DAE繞點D逆時針旋轉90°,得到△DCM.

1)求證:EF=FM;

2)當AE=1時,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=CB,∠BAC=BCA,∠ABC=90°FAB延長線上一點,點EBC上,且AE=CF.

(1)求證:RtABE RtCBF

(2)求證:AECF;

(3)若∠CAE=30°,求∠ACF度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理如圖1,在平面內選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數θ與OM的長度m確定,有序數對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”。應用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應記為___.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動,商場將29英寸和25英寸彩電共96臺分別以8折和7折出售,共得168400元。已知29英寸彩電原價為3000/臺,25英寸彩電原價為2000/臺,出售29英寸和25英寸彩電各多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【題目】如圖,在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數和一次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以圓O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是弧上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是

A. sinα,sinα B. cosα,cosα C. cosαsinα D. sinα,cosα

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了 名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數為 度;

(3)請將頻數分布直方圖補充完整;

(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?

查看答案和解析>>

同步練習冊答案