(2010•大田縣)某中學(xué)籃球隊(duì)12名隊(duì)員的年齡情況如下:
年齡(單位:歲)1415161718
人數(shù)14322
則這個隊(duì)隊(duì)員年齡的眾數(shù)和中位數(shù)分別是( )
A.15,16
B.15,15
C.15,15.5
D.16,15
【答案】分析:眾數(shù)即為出現(xiàn)次數(shù)最多的數(shù),所以從中找到出現(xiàn)次數(shù)最多的數(shù)即可;排序后位于中間位置的數(shù),或中間兩數(shù)的平均數(shù).
解答:解:∵14歲有1人,15歲有4人,16歲有3人,17歲有2人,18歲有2人,
∴出現(xiàn)次數(shù)最多的數(shù)據(jù)時15,
∴隊(duì)員年齡的眾數(shù)為15歲;
∵一共有12名隊(duì)員,
∴因此其中位數(shù)應(yīng)是第6和第7名同學(xué)的年齡的平均數(shù),
∴中位數(shù)為(16+16)÷2=16,
故中位數(shù)為16.
故選A.
點(diǎn)評:本題考查了眾數(shù)及中位數(shù)的概念,在確定中位數(shù)的時候應(yīng)該先排序,確定眾數(shù)的時候一定要仔細(xì)觀察.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•大田縣)已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•大田縣)已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2010•大田縣)已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市大田縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•大田縣)已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案