平面上有7條不同的直線,如果其中任何三條直線都不共點(diǎn).
(1)請(qǐng)畫出滿足上述條件的一個(gè)圖形,并數(shù)出圖形中各直線之間的交點(diǎn)個(gè)數(shù);
(2)請(qǐng)?jiān)佼嫵龈髦本之間的交點(diǎn)個(gè)數(shù)不同的圖形(至少兩個(gè));
(3)你能否畫出各直線之間的交點(diǎn)個(gè)數(shù)為n的圖形,其中n分別為6,21,15?
(4)請(qǐng)盡可能多地畫出各直線之間的交點(diǎn)個(gè)數(shù)不同的圖形,從中你能發(fā)現(xiàn)什么規(guī)律?

解:(1)如圖1所示;交點(diǎn)共有6個(gè),


(2)如圖2,3.

(3)當(dāng)n=6時(shí),必須有6條直線平行,都與一條直線相交.如圖4,
當(dāng)n=21時(shí),必須使7條直線中的每2條直線都相交(即無任何兩條直線平行)如圖5,
當(dāng)n=15時(shí),如圖6,



(4)當(dāng)我們給出較多答案時(shí),從較多的圖形中,可以總結(jié)出以下規(guī)律:
①當(dāng)7條直線都相互平行時(shí),交點(diǎn)個(gè)數(shù)是0,這是交點(diǎn)最少,
②當(dāng)7條直線每兩條均相交時(shí),交點(diǎn)個(gè)數(shù)為21,這是交點(diǎn)最多,
③設(shè)交點(diǎn)個(gè)數(shù)為n,則0≤n≤21,
分析:從平行線的角度考慮,先考慮六條直線都平行,再考慮五條、四條,三條,二條直線平行,都不平行作出草圖即可看出.
從畫出的圖形中歸納規(guī)律即可得到答案.
點(diǎn)評(píng):此題主要考查了平行線與相交線,關(guān)鍵是根據(jù)一定的規(guī)律畫出圖形,再再根據(jù)圖形歸納規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

、閱讀下列材料并填空。平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?
①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線……
②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表
點(diǎn)的個(gè)數(shù)
可作出直線條數(shù)
2
1=
3
3=
4
6=
5
10=
……
……
n

③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線。取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即
④結(jié)論:
試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
……
(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù),發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)
可連成三角形個(gè)數(shù)
3
 
4
 
5
 
……
 
n
 
 
(3)推理:                             
(4)結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河南省虞城縣營盤中學(xué)中考模擬三數(shù)學(xué)卷(帶解析) 題型:解答題

閱讀下列材料并填空。平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?
(1)分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線……
(2)歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表

點(diǎn)的個(gè)數(shù)
可作出直線條數(shù)
2
1=
3
3=
4
6=
5
10=
……
……
n

(3)推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線。取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即
(4)結(jié)論:
試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
……
(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù),發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)
可連成三角形個(gè)數(shù)
3
 
4
 
5
 
……
 
n
 
(3)推理:                             (4)結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京四中2011年中考數(shù)學(xué)全真模擬11.doc 題型:填空題

、閱讀下列材料并填空。平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?
①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線……
②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表

點(diǎn)的個(gè)數(shù)
可作出直線條數(shù)
2
1=
3
3=
4
6=
5
10=
……
……
n

③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線。取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即
④結(jié)論:
試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出      個(gè)三角形;
……
(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù),發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)
可連成三角形個(gè)數(shù)
3
 
4
 
5
 
……
 
n
 
 
(3)推理:                             
(4)結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)模擬試卷(二十)(解析版) 題型:解答題

閱讀下列材料并填空.
平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過其中的每兩點(diǎn)畫直線,一共能作出多少條不同的直線?
①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線…
②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)Sn發(fā)現(xiàn):如下表
點(diǎn)的個(gè)數(shù)可作出直線條數(shù)
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線.取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即Sn=④結(jié)論:Sn=試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)可連成三角形個(gè)數(shù)
3
4
5
n
(3)推理:
(4)結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年甘肅省中考數(shù)學(xué)試卷(2)(解析版) 題型:解答題

(2003•甘肅)閱讀以下材料并填空.
平面上有n個(gè)點(diǎn)(n≥2),且任意三個(gè)點(diǎn)不在同一直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?
(1)分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;
當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;
當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;
當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線;

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可連成直線的條數(shù)Sn,發(fā)現(xiàn):
(3)推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線.取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2,即
(4)結(jié)論:
點(diǎn)的個(gè)數(shù)可連成直線條數(shù)
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
試探究以下問題:
平面上有n(n≥3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線上,過任意三點(diǎn)作三角形,一共能作出多少不同的三角形?
①分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作______個(gè)三角形;
當(dāng)有4個(gè)點(diǎn)時(shí),可作______個(gè)三角形;
當(dāng)有5個(gè)點(diǎn)時(shí),可作______個(gè)三角形;

②歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn,發(fā)現(xiàn):
點(diǎn)的個(gè)數(shù)可連成三角形個(gè)數(shù)
3 
4 
5 
n 
③推理:______
取第一個(gè)點(diǎn)A有n種取法,
取第二個(gè)點(diǎn)B有(n-1)種取法,
取第三個(gè)點(diǎn)C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6.
④結(jié)論:______.

查看答案和解析>>

同步練習(xí)冊(cè)答案