閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G.如果,求的值.

他的做法是:過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為    ,CG和EH的數(shù)量關(guān)系為    ,的值為    .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為    (用含a的代數(shù)式表示).

(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為    (用含m,n的代數(shù)式表示).

(1)3,2,;(2);(3)mn.

解析試題分析:(1)過E點(diǎn)作平行線,構(gòu)造相似三角形,利用相似三角形和中位線的性質(zhì),分別將各相關(guān)線段均統(tǒng)一用EH來表示,最后求得比值;
(2)先作EH∥AB交BG于點(diǎn)H,得出△EFH∽△AFB,即可得出,再根據(jù)AB=CD,表示出CD,根據(jù)平行線的性質(zhì)得出△BEH∽△BCG,即可表示出,從而得出的值;
(3)先過點(diǎn)E作EH∥AB交BD的延長線于點(diǎn)H,得出EH∥AB∥CD,根據(jù)EH∥CD,得出△BCD∽△BEH,再進(jìn)一步證出△ABF∽△EHF,從而得出的值.
試題解析:(1)過點(diǎn)E作EH∥AB交BG于點(diǎn)H,
則有△ABF∽△HEF,
,
∴AB=3EH.
∵平行四邊形ABCD中,EH∥AB,
∴EH∥CD,
又∵E為BC中點(diǎn),
∴EH為△BCG的中位線,
∴CG=2EH,
;
(2)作EH∥AB交BG于點(diǎn)H,則△EFH∽△AFB,
,
∴AB=aEH.
∵AB=CD,
∴CD=aEH.
∵EH∥AB∥CD,
∴△BEH∽△BCG.
,
∴CG=2EH.
;
(3)過點(diǎn)E作EH∥AB交BD的延長線于點(diǎn)H,則有EH∥AB∥CD,
∵EH∥CD,
∴△BCD∽△BEH,
,
∴CD=nEH.
,
∴AB=mCD=mnEH.
∵EH∥AB,
∴△ABF∽△EHF,

考點(diǎn):相似形綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,梯形中,,.一個動點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度沿線段方向運(yùn)動,過點(diǎn),交折線段于點(diǎn),以為邊向右作正方形,點(diǎn)在射線上,當(dāng)點(diǎn)到達(dá)點(diǎn)時,運(yùn)動結(jié)束.設(shè)點(diǎn)的運(yùn)動時間為秒().
(1)當(dāng)正方形的邊恰好經(jīng)過點(diǎn)時,求運(yùn)動時間的值;
(2)在整個運(yùn)動過程中,設(shè)正方形與△的重合部分面積為,請直接寫出之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖2,當(dāng)點(diǎn)在線段上運(yùn)動時,線段與對角線交于點(diǎn),將△沿翻折,得到△,連接.是否存在這樣的,使△是等腰三角形?若存在,求出對應(yīng)的的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如果一個圖形經(jīng)過分割,能成為若干個與自身相似的圖形,我們稱它為“相似分割的圖形”,如圖所示的等腰直角三角形和矩形就是能相似分割的圖形.

(1)你能否再各舉出一個 “能相似分割”的三角形和四邊形?
(2)一般的三角形是否是“能相似分割的圖形”?如果是請給出一種分割方案并畫出圖形,否則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在正方形中,分別是邊上的點(diǎn),并延長交的延長線于點(diǎn)

(1)求證:;
(2)若正方形的邊長為4,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC在坐標(biāo)平面內(nèi)三個頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(3,3)、C(3,1).

(1)根據(jù)題意,請你在圖中畫出△ABC;
(2)在原圖中,以B為位似中心,畫出△A′BC′使它與△ABC位似且位似比是3:1,并寫出頂點(diǎn)A′和C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,,,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,AC=8cm,BC=16cm,點(diǎn)P從點(diǎn)A出發(fā),沿著AC邊向點(diǎn)C以1cm/s的速度運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),沿著CB邊向點(diǎn)B以2cm/s的速度運(yùn)動,如果P與Q同時出發(fā),經(jīng)過幾秒△PQC和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

老師要求同學(xué)們在圖①中內(nèi)找一點(diǎn)P,使點(diǎn)P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點(diǎn)P,點(diǎn)P即為所求.
請你在圖②中的內(nèi)找一點(diǎn)P,使點(diǎn)P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

晚上,小亮走在大街上.他發(fā)現(xiàn):當(dāng)他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個影子成一直線時,自己右邊的影子長為3米,左邊的影子長為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米.求路燈的高.

查看答案和解析>>

同步練習(xí)冊答案