拋物線y=a(x+2)2+c與x軸交于A、B兩點(diǎn),與y軸負(fù)半軸交于點(diǎn)C,已知點(diǎn)A(-1,0),OB=OC.
(1)求此拋物線的解析式;
(2)若點(diǎn)M是拋物線上一個(gè)動(dòng)點(diǎn),且S△BCM=S△ABC,求點(diǎn)M的坐標(biāo);
(3)Q為直線y=-x-4上一點(diǎn),在此拋物線的對(duì)稱軸是否存在一點(diǎn)P,使得∠APB=2∠AQB,且這樣的Q點(diǎn)有且只有一個(gè)?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)由拋物線y=a(x+2)2+c可知,其對(duì)稱軸為x=-2,
∵點(diǎn)A坐標(biāo)為(-1,0),
∴點(diǎn)B坐標(biāo)為(-3,0),
∵OB=OC,
∴C點(diǎn)坐標(biāo)為(0,-3).
將A(-1,0)、C(0,-3)分別代入解析式得,
a+c=0
4a+c=-3

解得,
a=-1
c=1

則函數(shù)解析式為y=-x2-4x-3.

(2)BC:y=-x-3,
∴AM:y=-x-1,
y=-x-1
y=-x2-4x-3

∴M(-2,1),
同理
y=-x-5
y=-x2-4x-3
,
∴M(
-3+
17
2
-
7+
17
2
)或(-
3+
17
2
,
17
-7
2
),

(3)設(shè)P(-2,m),以P為圓心的圓與直線y=-x-4相切,得
(m+2)2
2
=1+m2
,m=2±
6
,
故P(-2,2+
6
)或(-2,2-
6
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
(1)這條拋物線與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過(guò)A、B、C三點(diǎn),求扇形MAC的面積;
(2)在(1)的條件下,拋物線上是否存在點(diǎn)P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:如圖所示,一次函數(shù)有y=-2x+3的圖象與x軸、y軸分別交于A、C兩點(diǎn),二次函數(shù)y=x2+bx+c的圖象過(guò)點(diǎn)C,且與一次函數(shù)在第二象限交于另一點(diǎn)B,若AC:CB=1:2,那么這二次函數(shù)的頂點(diǎn)坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
11
4
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=x+k圖象過(guò)點(diǎn)A(1,0),交y軸于點(diǎn)B,C為y軸負(fù)半軸上一點(diǎn),且OB=
1
2
BC,過(guò)A,C兩點(diǎn)的拋物線交直線AB于點(diǎn)D,且CDx軸.
(1)求這條拋物線的解析式;
(2)直接寫出使一次函數(shù)值小于二次函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)20m的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為2元一件的小商品,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x元與日銷售量y件之間有如下關(guān)系:
x35911
y181462
(1)在直角坐標(biāo)系中
①根據(jù)表中提供的數(shù)據(jù)描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn);
②猜測(cè)并確定日銷售量y件與日銷售單價(jià)x元之間的函數(shù)關(guān)系式,并畫出圖象.并說(shuō)明當(dāng)x≥12時(shí)對(duì)應(yīng)圖象的實(shí)際意義.
(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)(不考慮其他因素)為P元,根據(jù)日銷售規(guī)律:
①試求日銷售利潤(rùn)P元與日銷售單價(jià)x元之間的函數(shù)關(guān)系式;
②當(dāng)日銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn)?試問(wèn)日銷售利潤(rùn)P是否存在最小值?若有,試求出,并說(shuō)明其實(shí)際意義;若無(wú),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題背景:
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
提出新問(wèn)題:
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌?
分析問(wèn)題:
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
解決問(wèn)題:
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x1/41/31/21234
y
17
2
20
3
545
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=______時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最______值(填“大”或“小”),是______.
(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線y=-x+4分別交x軸、y軸于點(diǎn)A、C,過(guò)A、C兩點(diǎn)的拋物線y=ax2-2ax+c交x軸于另一點(diǎn)B.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度沿線段BA方向運(yùn)動(dòng),同時(shí)動(dòng)直線l從x軸出發(fā),以每秒1個(gè)單位長(zhǎng)度沿y軸方向平行移動(dòng),直線l交AC與D,交BC于E,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),兩者都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,△QED的面積為S.
①求S與t的函數(shù)關(guān)系式:并探究:當(dāng)t為何值時(shí),S有最大值為多少?
②在點(diǎn)Q及直線l的運(yùn)動(dòng)過(guò)程中,是否存在△QED為直角三角形?若存在,請(qǐng)求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案