【題目】如圖,△ABC內(nèi)接于⊙O,BC是直徑,⊙O的切線PA交CB的延長線于點(diǎn)P,OE∥AC交AB于點(diǎn)F,交PA于點(diǎn)E,連接BE.
(1)判斷BE與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,BE=3,求AB的長.
【答案】(1)BE是⊙O的切線;(2).
【解析】試題分析:(1)結(jié)論:BE是⊙O的切線.首先證明∠OAP=90°,再證明△EOB≌△EOA,推出∠OBE=∠OAE即可解決問題.
(2)由(1)可知AB=2BF,在Rt△BEO中,∠OBE=90°,OB=4,BE=3,可得OE==5,由BEOB=OEBF,可得BF==,由此即可解決問題.
試題解析:(1)BE是⊙O的切線.
理由:如圖連接OA.
∵PA是切線,
∴PA⊥OA,
∴∠OAP=90°,
∵BC是直徑,
∴∠BAC=90°,
∵OE∥AC,
∴∠OFB=∠BAC=90°,
∴OE⊥AB,
∴BF=FA,
∵OB=OA,
∴∠EOB=∠EOA,
在△EOB和△EOA中,
,
∴△EOB≌△EOA,
∴∠OBE=∠OAE=90°,
∴OB⊥BE,
∴BE是⊙O的切線.
(2)由(1)可知AB=2BF,
在Rt△BEO中,∵∠OBE=90°,OB=8,BE=6,
∴OE==5,
∵BEOB=OEBF,
∴BF==,
∴AB=2BF=
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.
(1)求購進(jìn)甲、乙兩種花卉,每盆各需多少元?
(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來購進(jìn)這兩種花卉,設(shè)購進(jìn)甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,考慮到顧客需求,要求購進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進(jìn)方案?在所有的購進(jìn)方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖所示.
(1)化簡:|a|= |b|= ;
(2)比較大小a﹣c 0,a+b 0.
(3)將a,b,c,﹣a,﹣b,﹣c按從小到大的順序,用“<”號連接.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個(gè))與銷售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種健身球的銷售單價(jià)不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,將一塊三角板EFG如圖1所示,△EFG的邊與直線AB、CD分別相交于M,N兩點(diǎn),∠F=90°,∠E=30°.
(1)求證:∠EMB+∠DNG=90°
(2)將另一塊三角板MPQ如圖2放置,△MPQ的邊PQ、PM分別與直線CD相交于點(diǎn)R,與△EFG的EG相交于點(diǎn)O,∠P=90°,∠PMQ=45°,直接寫出∠PMB與∠PRD的數(shù)量關(guān)系:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年4月23日,是第25個(gè)世界讀書日.為了解學(xué)生每周閱讀時(shí)間,某校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)間x(單位:小時(shí))分成了4組,A:0≤x<2;B:2≤x<4;C:4≤x<6;D:6≤x<8,試結(jié)合圖中所給信息解答下列問題:
(1)這次隨機(jī)抽取了 名學(xué)生進(jìn)行調(diào)查;扇形統(tǒng)計(jì)圖中,扇形B的圓心角的度數(shù)為 .
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校共有2000名學(xué)生,試估計(jì)每周閱讀時(shí)間不少于4小時(shí)的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計(jì)劃一周生產(chǎn)自行車2100輛,平均每天計(jì)制生產(chǎn)300輛,實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況.(超過每天計(jì)劃生產(chǎn)數(shù)記為正,不足每天計(jì)劃生產(chǎn)數(shù)記為負(fù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
每天超出計(jì)劃的量數(shù) |
(1)該廠星期四實(shí)際生產(chǎn)自行車______輛
(2)該廠本周實(shí)際每天平均生產(chǎn)多少輛自行車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①已知△ACB和△DCE為等腰直角三角形,按如圖的位置擺放,直角頂點(diǎn)
C重合.
(1)求證:AD=BE;
(2)將△DCE繞點(diǎn)C旋轉(zhuǎn)得到圖②,點(diǎn)A、D、E在同一直線上時(shí),若CD=,BE=3,
求AB 的長;
(3)將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到圖③,若∠CBD=45°,AC=6,BD=3,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com