【題目】如圖,⊙O的半徑為5,P為⊙O上一點,P(4,3),PC、PD為⊙O的弦,分別交y軸正半軸于E、F,且PE=PF,連CD,設(shè)直線CD為y=kx+b,則k=

【答案】
【解析】解:

如圖,取點P關(guān)于y軸的對稱點Q,

∵P(4,3),

∴Q(﹣4,3),連接PQ,

∴PQ⊥y軸,

∵PE=PF,

∴∠CPE=∠DPE,

∴點Q為 的中點,

連接OQ,則OQ⊥DC,

設(shè)直線OQ解析式為y=mx,

把Q點坐標代入可得3=﹣4m,解得m=﹣ ,

∴直線OQ解析式為y=﹣ x,

∴直線CD解析式為y= x+b,

∴k=

所以答案是:

【考點精析】利用確定一次函數(shù)的表達式和垂徑定理對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點P在∠AOB內(nèi),點MN分別是點P關(guān)于AO、BO所在直線的對稱點.

1)若PEF的周長為20,求MN的長.

2)若∠O=50°,求∠EPF的度數(shù).

3)請直接寫出∠EPF與∠O的數(shù)量關(guān)系是_____________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,四邊形是矩形,點的坐標分別為,點的速度從出發(fā)向終點運動,點的速度從出發(fā)向終點運動,當是以為一腰的等腰三角形時,點的坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠B=C=45°,點DBC邊上,點EAC邊上,且∠ADE=AED,連結(jié)DE

1)當∠BAD=60°,求∠CDE的度數(shù);

2)當點DBC(點BC除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有依次排列的三個數(shù):,,對這三個數(shù)作如下操作:對任何相鄰的兩個數(shù),都用左邊的數(shù)減去右邊的數(shù),將所得之差寫在這兩個數(shù)之間,即可產(chǎn)生一個新數(shù)串:“2,7,-5,-13,8”稱為第一次操作;做第二次同樣的操作后又產(chǎn)生一個新數(shù)串:“2,-5,7,12,-5,8,-13,-21,8”……依次繼續(xù)操作下去,直到第次操作后停止操作.則第次操作所得新數(shù)串中所有各數(shù)的和為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖中表示一次函數(shù) y mx n 與正比例函數(shù) y nxm , n 是常數(shù),且 mn 0 圖象的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年年初,我國爆發(fā)新冠肺炎疫情,某省鄰近縣市 CD 獲知 A、B 兩市分別急需救援物資 200噸和 300 噸的消息后,決定調(diào)運物資支援.已知 C 市有救援物資 240 噸,D 市有救援物資 260 噸,現(xiàn)將這些救援物資全部調(diào)往 A、B 兩市.已知從 C 市運往 A、B 兩市的費用分別為每噸 20 元和 25 元,從D 市運往往 A、B 兩市的費用分別為每噸 15 元和 30 元,設(shè)從 C 市運往 A 市的救援物資為 x 噸.

1 請?zhí)顚懴卤恚?/span>

A

B

合計(噸)

C

x

_____

240

D

_____

_____

260

總計(噸)

200

300

500

2)設(shè) CD 兩市的總運費為 W 元,則 W x 之間的函數(shù)關(guān)系式為_________,其中自變量 x的取值范圍是________;

3)經(jīng)過搶修,從 C 市到 B 市的路況得到了改善,縮短了運輸時間,運費每噸減少 n 元(n10),其余路線運費不變,若 C、D 兩市的總運費的最小值不小于 7920 元,則 n 的取值范圍是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市開展一項自行車旅游活動,線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價為120元、170元的A,B兩種型號的電風扇,如表所示是近2周的銷售情況:(進價、售價均保持不變,利潤=銷售收入一進貨成本)

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

6

5

2200元

第二周

4

10

3200元

(1)求A、B兩種型號的電風扇的銷售單價;

(2)若超市再采購這兩種型號的電風扇共130臺,并且全部銷售完,該超市能否實現(xiàn)這兩批的總利潤為8010元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案