【題目】如圖,拋物線與x軸交于A(﹣3,0),B(1,0),與y軸交于點(diǎn)C(0,3),連結(jié)AC,現(xiàn)有一寬度為1,長(zhǎng)度足夠的矩形沿x軸方向平移,交直線AC于點(diǎn)DE,ODE周長(zhǎng)的最小值為( 。

A. 2+ B. 6 C. 2 D. 2+3

【答案】A

【解析】

根據(jù)題意作正方形AOCM,連接OM、作MN∥AC,使得MN=DE,連接ONACE,此時(shí)OD+OE的值最。

如圖,

∵OA=OC=3,作正方形AOCM,連接OM、作MN∥AC,使得MN=DE,連接ONACE,此時(shí)OD+OE的值最。
∵M(jìn)N=DE,MN∥DE,
∴四邊形MNED是平行四邊形,
∴DM=EN,
∴△ODE的周長(zhǎng)=OD+DE+EO=DM+DE+OE=NE+OE+DE=ON+DE,
∵AC⊥OM
∴MN⊥OM,
∴∠NMO=90°,
∵M(jìn)N=DE=,OM=3,
∴ON=,
∴△ODE的周長(zhǎng)的最小值為2+,
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長(zhǎng)ABBC,CA至點(diǎn)A1,B1,C1,使A1BAB,B1CBC,C1ACA,順次連結(jié)A1,B1C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1C1A1至點(diǎn)A2,B2,C2,使A2B1A1B1B2C1B1C1,C2A1C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過2013,最少經(jīng)過_____次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACB中,ACB=90゜,CDAB于D.

(1)求證:ACD=B;

(2)若AF平分CAB分別交CD、BC于E、F,求證:CEF=CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC10cm,BC6cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒,BPDCQP是否全等?請(qǐng)說明理由;

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè),

①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;

②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b與雙曲線y=交于A(2,n)、B(﹣3,﹣2)兩點(diǎn),與x軸,y軸分別交于C、D兩點(diǎn).

(1)試求雙曲線y=的解析式;

(2)試求直線y=kx+b的解析式;

(3)試求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)上一動(dòng)點(diǎn),把沿折疊,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在的角平分線上時(shí),則點(diǎn)的距離為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,的垂直平分線,交,射線上,并且

)求證:;

)當(dāng)的大小滿足什么條件時(shí),四邊形是菱形?請(qǐng)回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉興市2010~2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如下

請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)求嘉興市2010~2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).

(2)求嘉興市近三年(2012~2014)的社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).

(3)用適當(dāng)?shù)姆椒A(yù)測(cè)嘉興市2015年社會(huì)消費(fèi)品零售總額(只要求列出算式,不必計(jì)算出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案