【題目】如圖,原有一大長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標號為( )
A.①②
B.②③
C.①③
D.①②③
【答案】A
【解析】解:如圖,設圖形①的長和寬分別是a、c,圖形②的邊長是b,圖形③的邊長是d,
∵原來該大長方形的周長是120,
∴2(a+2b+c)=120.
根據(jù)圖示,可得 ,
①﹣②,可得:a﹣b=b﹣c,
∴2b=a+c,
∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,
∴2(a+c)=60,4b=60,
∵圖形①的周長是2(a+c),圖形②的周長是4b,
∴圖形①②的周長是定值,不用測量就能知道,圖形③的周長不用測量無法知道.
∴分割后不用測量就能知道周長的圖形的標號為①②.
故選:A.
【考點精析】關于本題考查的中心對稱及中心對稱圖形,需要了解如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】學校計劃從商店購買同一品牌的鋼筆和文具盒,已知購買一個文具盒比購買一個鋼筆多用20元,若用400元購買文具盒和用160元購買鋼筆,則購買文具盒的個數(shù)是購買鋼筆個數(shù)的一半.
(1)分別求出該品牌文具盒、鋼筆的定價;
(2)經(jīng)商談,商店給予學校購買一個該品牌文具盒贈送一個該品牌鋼筆的優(yōu)惠,如果學校需要鋼筆的個數(shù)是文具盒個數(shù)的2倍還多8個,且學校購買文具盒和鋼筆的總費用不超過670元,那么該學校最多可購買多少個該品牌文具盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖的平面直角坐標系 xOy,△ABC 的三個頂點 都在格點上,點 A的坐標是(4,4),請解答下列問題:
(1)將△ABC 向下平移 5 單位長度,畫出平移后的△A1B1C1并寫出點 A對應點A1的坐標;
(2)畫出△A1B1C1 關于 y 軸對稱的△A2B2C2 并寫出 A2 的坐標;
(3)求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)若AE=1時,求AP的長;
(2)當∠BQD=30°時,求AP的長;
(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
在學習“可化為一元一次方程的分式方程及其解法”的過程中,老師提出一個問題:若關于x的分式方程=1的解為正數(shù),求a的取值范圍.
經(jīng)過獨立思考與分析后,小杰和小哲開始交流解題思路如下:
小杰說:解這個關于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.
小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.
(1)請回答: 的說法是正確的,并簡述正確的理由是 ;
(2)參考對上述問題的討論,解決下面的問題:
若關于x的方程的解為非負數(shù),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=6,BC=9,將△ABC折疊,使點C與AB的中點D重合,折痕交AC于點M,交BC于點N.
(1)求線段BN的長;
(2)連接CD,與MN交于點E,寫出與點E相關的兩個正確結(jié)論:① ;
② .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.
(1)寫出A,C的坐標;
(2)圖中A與C的坐標之間的關系是什么?
(3)如果三角形AOB中任意一點M的坐標為(x,y),那么它的對應點N的坐標是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=2BC,現(xiàn)給出下列結(jié)論:①sinA= ;②cosB= ;③tanA= ;④tanB= ,其中正確的結(jié)論是(只需填上正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com