【題目】如圖,從一塊直徑為24cm的圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A,B,C在圓周上,將剪下的扇形作為一個圓錐的側面,則這個圓錐的底面圓的半徑是( 。

A.12cm
B.6cm
C.3 cm
D.2 cm

【答案】C
【解析】解:作OD⊥AC于點D,連接OA,
∴∠OAD=45°,AC=2AD,
∴AC=2(OA×cos45°)=12 cm,
=6 π
∴圓錐的底面圓的半徑=6 π÷(2π)=3 cm.
故選C.

【考點精析】根據(jù)題目的已知條件,利用圓錐的相關計算的相關知識可以得到問題的答案,需要掌握圓錐側面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側面積S=πrl;V圓錐=1/3πR2h.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,二次函數(shù)y=﹣x2+mx+n的圖象經(jīng)過點A(3,0),B(m,m+1),且與y軸相交于點C.
(1)求這個二次函數(shù)的解析式并寫出其圖象頂點D的坐標;
(2)求∠CAD的正弦值;
(3)設點P在線段DC的延長線上,且∠PAO=∠CAD,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,A、B、C三點的坐標為( ,0)、(3 ,0)、(0,5),點D在第一象限,且∠ADB=60°,則線段CD的長的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當∠BAC=∠MBN=90°時, ①如圖a,當θ=45°時,∠ANC的度數(shù)為;
(2)②如圖b,當θ≠45°時,①中的結論是否發(fā)生變化?說明理由;
(3)如圖c,當∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關系,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐際系xOy中,當m,n滿足mn=k(k為常數(shù),且m>0,n>0)時,就稱點(m,n)為“等積點”.
(1)若k=4,求函數(shù)y=x﹣4的圖象上滿足條件的,“等積點”坐標;
(2)若直線y=﹣x+b(b>0)與x軸、y軸分別交于點A和點B,并且直線有且只有一個“等積點”,過點A與y軸平行的直線和過點B與x軸平行的直線交于點C,點E是直線AC上的“等積點”,點F是直線BC上的“等積點”,若△OEF的面積為k2+ k﹣ ,求EF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】秋季新學期開學時,紅城中學對七年級新生掌握“中學生日常行為規(guī)范”的情況進行了知識測試,測試成績全部合格,現(xiàn)學校隨機選取了部分學生的成績,整理并制作成了如下不完整的圖表:

分 數(shù) 段

頻數(shù)

頻率

60≤x<70

9

a

70≤x<80

36

0.4

80≤x<90

27

b

90≤x≤100

c

0.2


請根據(jù)上述統(tǒng)計圖表,解答下列問題:
(1)在表中,a= , b= , c=
(2)補全頻數(shù)直方圖;
(3)根據(jù)以上選取的數(shù)據(jù),計算七年級學生的平均成績.
(4)如果測試成績不低于80分者為“優(yōu)秀”等次,請你估計全校七年級的800名學生中,“優(yōu)秀”等次的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對應值如下表:

x

﹣1

0

1

2

3

ax2+bx+c

﹣2

1

2

1

﹣2

請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個根x1 , x2的取值范圍是下列選項中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2
C.﹣ <x1<0,2<x2
D.﹣1<x1<﹣ , <x2<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,求兩次都摸到白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當m,n是實數(shù)且滿足m﹣n=mn時,就稱點Q(m, )為“奇異點”,已知點A、點B是“奇異點”且都在反比例函數(shù)y= 的圖象上,點O是平面直角坐標系原點,則△OAB的面積為( )
A.1
B.
C.2
D.

查看答案和解析>>

同步練習冊答案