如圖,已知∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠1=35°.
①求∠B的度數(shù);   
②求證:AB∥CD.
分析:①根據(jù)角平分線的定義求出∠2,再根據(jù)直角三角形兩銳角互余求解即可;
②根據(jù)內(nèi)錯角相等,兩直線平行判定即可.
解答:①解:∵∠DAB=70°,AC平分∠DAB,
∴∠2=
1
2
∠DAB=
1
2
×70°=35°,
∵∠ACB=90°,
∴∠B=90°-∠2=90°-35°=55°;

②證明:∵∠1=35°,∠2=35°,
∴∠1=∠2,
∴AB∥CD.
點評:本題考查了平行線的判定,角平分線的定義,直角三角形兩銳角互余的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知∠ACB=∠CBD=90°,BC=a,AC=b,當(dāng)CD=(  )時,△CDB∽△ABC.
A、
a2
b
B、
b2
a
C、
b
a
a2+b2
D、
a
b
a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知∠ACB是⊙O的圓周角,∠ACB=40°,則圓心角∠AOB=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD,還需要添加一個條件,這個條件可以是
AC=BD
AC=BD
BC=AD
BC=AD
∠ABC=∠BAD
∠ABC=∠BAD
∠CAB=∠DBA
∠CAB=∠DBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ACB與△DFE是兩個全等的直角三角形,量得它們的斜邊長為10cm,較小銳角為30°,將這兩個三角形擺成如圖(1)所示的形狀,使點B、C、F、D在同一條直線上,且點C與點F重合,將圖(1)中的△ACB繞點C順時針方向旋轉(zhuǎn)到圖(2)的位置,點E在邊AB上,AC交DE于點G,則線段FG的長為
5
3
2
5
3
2
cm(保留根號)

查看答案和解析>>

同步練習(xí)冊答案