11.已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請(qǐng)寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=$\frac{1}{2}$時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請(qǐng)寫出一個(gè)你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別將于C,D兩點(diǎn),求線段CD的最大值.

分析 (1)根據(jù)給出的拋物線的解析式并且結(jié)合函數(shù)的圖象寫出三條不同的結(jié)論即可;
(2)先將a=$\frac{1}{2}$代入拋物線解析式,分別求得M、N、E、F四點(diǎn)坐標(biāo),再根據(jù)四點(diǎn)坐標(biāo)寫出合理的結(jié)論;
(3)根據(jù)題意求出CD關(guān)于x的解析式,然后求出當(dāng)x=0時(shí),CD的值最大.

解答 解:
(1)答案不唯一,只要合理均可.例如:
①拋物線y1=-ax2-ax+1開口向下,或拋物線y2=ax2-ax-1開口向上;
②拋物線y1=-ax2-ax+1的對(duì)稱軸是x=-$\frac{1}{2}$,或拋物線y2=ax2-ax-1的對(duì)稱軸是x=$\frac{1}{2}$;
③拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)(0,1),或拋物線y2=ax2-ax-1經(jīng)過點(diǎn)(0,-1);
④拋物線y1=-ax2-ax+1與y2=ax2-ax-1的形狀相同,但開口方向相反;
⑤拋物線y1=-ax2-ax+1與y2=ax2-ax-1都與x軸有兩個(gè)交點(diǎn);
⑥拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)(-1,1)或拋物線y2=ax2-ax-1經(jīng)過點(diǎn)(1,-1);
(2)當(dāng)a=$\frac{1}{2}$時(shí),y1=-$\frac{1}{2}$x2-$\frac{1}{2}$x+1,令0=-$\frac{1}{2}$x2-$\frac{1}{2}$x+1,
解得xM=-2,xN=1.
y2=$\frac{1}{2}$x2-$\frac{1}{2}$x-1,令0=$\frac{1}{2}$x2-$\frac{1}{2}$x-1,解得xE=-1,xF=2.
①∵xM+xF=0,xN+xE=0,
∴點(diǎn)M與點(diǎn)F關(guān)于x軸對(duì)稱,點(diǎn)N與點(diǎn)E關(guān)于x軸對(duì)稱;
②∵xM+xF+xN+xE=0,
∴M,N,E,F(xiàn)四點(diǎn)橫坐標(biāo)的代數(shù)和為0;
③∵M(jìn)N=3,EF=3,
∴MN=EF(或ME=NF);
(3)∵a>0,
∴拋物線y1=-ax2-ax+1開口向下,拋物線y2=ax2-ax-1開口向上.
根據(jù)題意,得CD=y1-y2=(-ax2-ax+1)-(ax2-ax-1)=-2ax2+2.
∴當(dāng)x=0時(shí),CD的最大值是2.

點(diǎn)評(píng) 本題是二次函數(shù)的綜合題,題中涉及拋物線的性質(zhì)以及最值的求法等知識(shí)點(diǎn),解題時(shí)要注意數(shù)形結(jié)合數(shù)學(xué)思想的運(yùn)用,是各地中考的熱點(diǎn)和難點(diǎn),同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示為農(nóng)村一古老的搗碎器,已知支撐柱AB的高為0.3米,踏板DE長(zhǎng)為1米,支撐點(diǎn)A到踏腳D的距離為0.6米,原來搗頭點(diǎn)E著地,現(xiàn)在踏腳D著地,則搗頭點(diǎn)E上升了(  )
A.0.5米B.0.6米C.0.3米D.0.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖:已知A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,BC=4,AB=12,
(1)寫出數(shù)軸上A、B兩點(diǎn)表示的數(shù);
(2)動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,t為何值時(shí),原點(diǎn)O、與P、Q三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在四邊形ABCD中,∠BCD+∠B=180°,AC⊥CB于C,EF⊥CB于F,∠1和∠2相等嗎?請(qǐng)完成下面的說理過程.
說明:因?yàn)椤螧CD+∠B=180°(已知)
所以AB∥CD(同旁內(nèi)角互補(bǔ),兩直線平行)
因?yàn)锳C⊥CB,EF⊥CB(已知)
所以∠ACB=∠EFB=90°(垂直的定義)
所以AC∥EF(同位角相等,兩直線平行)
所以∠2=∠3(兩直線平行,同位角相等)
所以∠1=∠2(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD:AO=8:5,BC=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下面兩個(gè)多位數(shù)1397139,6842684,…都是按照如下方法得到的:從左邊起,將第1位數(shù)字乘以3,若積為一位數(shù),將其寫在第2位上,若積為兩位數(shù),則將其個(gè)位數(shù)字寫在第2位.再對(duì)第2位數(shù)字再進(jìn)行如上操作,得到第3位數(shù)字…,后面的每一位數(shù)字都是由前一位數(shù)字進(jìn)行如上操作得到的.當(dāng)?shù)?位數(shù)字是2時(shí),若按如上操作得到一個(gè)多位數(shù),則這個(gè)多位數(shù)前50位數(shù)字之和是( 。
A.242B.248C.254D.258

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C.
(1)求出此拋物線的解析式及對(duì)稱軸方程.
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式.
(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q,是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,該圖形由6個(gè)完全相同的小正方形排列而成.
(1)它是哪一種幾何體的表面展開圖?
(2)將數(shù)-3,-2,-1,1,2,3填入小正方形中,使得相對(duì)的面上數(shù)字互為相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,一只螞蟻沿著一個(gè)長(zhǎng)方體表面從點(diǎn)A出發(fā),經(jīng)過3個(gè)面爬到點(diǎn)B,已知底面是邊長(zhǎng)為2的正方形,高為8,如果它運(yùn)動(dòng)的路徑是最短的,則最短路徑的長(zhǎng)為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案