設(shè)2005=c13a1+c23a2+…+cn3an,其中n為正整數(shù),a1,a2,…,an為互不相等的自然數(shù)(包括0,約定30=1),c1,c2,…,cn中的每一個(gè)都等于1或-1,則a1+a2+…+an=
22
22
分析:首先把2005分解成若干個(gè)3n之和與差的形式,然后求出a1+a2+…+an的值.
解答:解:根據(jù)題意可知:
2005+35+33+3=37+34+32+30,
故2005=37-35+34-33+32-3+30,
故a1+a2+…+an=7+5+4+3+2+1+0=22.
故答案為22.
點(diǎn)評(píng):本題主要考查整數(shù)問題的知識(shí)點(diǎn),解答本題的關(guān)鍵是把2005分解成若干個(gè)3n之和與差的形式,此題難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)2005=c13a1+c23a2+…+cn3an,其中n為正整數(shù),a1,a2,…,an為互不相等的自然數(shù)(包括0,約定30=1),c1,c2,…,cn中的每一個(gè)都等于1或-1,則a1+a2+…+an=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2005•江西)如圖,平面直角坐標(biāo)系中,△ABC為等邊三角形,其中點(diǎn)A、B、C的坐標(biāo)分別為(-3,-1)、(-3,-3)、(-3+,-2).現(xiàn)以y軸為對(duì)稱軸作△ABC的對(duì)稱圖形,得△A1B1C1,再以x軸為對(duì)稱軸作△A1B1C1的對(duì)稱圖形,得△A2B2C2
(1)直接寫出點(diǎn)C1、C2的坐標(biāo);
(2)能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?你若認(rèn)為能,請(qǐng)作出肯定的回答,并直接寫出所旋轉(zhuǎn)的度數(shù);你若認(rèn)為不能,請(qǐng)作出否定的回答(不必說明理由);
(3)設(shè)當(dāng)△ABC的位置發(fā)生變化時(shí),△A2B2C2、△A1B1C1與△ABC之間的對(duì)稱關(guān)系始終保持不變.
①當(dāng)△ABC向上平移多少個(gè)單位時(shí),△A1B1C1與△A2B2C2完全重合并直接寫出此時(shí)點(diǎn)C的坐標(biāo);
②將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α°(0≤α≤180),使△A1B1C1與△A2B2C2完全重合,此時(shí)α的值為多少點(diǎn)C的坐標(biāo)又是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•江西)如圖,平面直角坐標(biāo)系中,△ABC為等邊三角形,其中點(diǎn)A、B、C的坐標(biāo)分別為(-3,-1)、(-3,-3)、(-3+,-2).現(xiàn)以y軸為對(duì)稱軸作△ABC的對(duì)稱圖形,得△A1B1C1,再以x軸為對(duì)稱軸作△A1B1C1的對(duì)稱圖形,得△A2B2C2
(1)直接寫出點(diǎn)C1、C2的坐標(biāo);
(2)能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?你若認(rèn)為能,請(qǐng)作出肯定的回答,并直接寫出所旋轉(zhuǎn)的度數(shù);你若認(rèn)為不能,請(qǐng)作出否定的回答(不必說明理由);
(3)設(shè)當(dāng)△ABC的位置發(fā)生變化時(shí),△A2B2C2、△A1B1C1與△ABC之間的對(duì)稱關(guān)系始終保持不變.
①當(dāng)△ABC向上平移多少個(gè)單位時(shí),△A1B1C1與△A2B2C2完全重合并直接寫出此時(shí)點(diǎn)C的坐標(biāo);
②將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α°(0≤α≤180),使△A1B1C1與△A2B2C2完全重合,此時(shí)α的值為多少點(diǎn)C的坐標(biāo)又是什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案