精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在凸四邊形中,.

1)利用尺規(guī),以為邊在四邊形內部作等邊(保留作圖痕跡,不需要寫作法).

2)連接,判斷四邊形的形狀,并說明理由.

【答案】1)見解析;(2)四邊形ABCE是菱形,理由見解析.

【解析】

1)分別以點C、D為圓心,CD長為半徑畫弧,在四邊形ABCD內部交于點E,連接CEDE即可得;

2)先證ABCE,結合ABCE可得四邊形ABCE是平行四邊形,然后由ABBC可得四邊形ABCE是菱形.

解:(1)如圖所示,CDE即為所求:

2)四邊形ABCE是菱形,

理由:∵△CDE是等邊三角形,

∴∠ECD60°,CDDECE,

∵∠ABC+∠BCD240°

∴∠ABC+∠BCE180°,

ABCE,

又∵ABBCCD,

ABCE,

∴四邊形ABCE是平行四邊形,

ABBC,

∴四邊形ABCE是菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點E在邊AB上,連接DE,取DE的中點F,連接EO并延長交CD于點G.若BE=3CG,OF=2,則線段AE的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(問題情境)一節(jié)數學課后,老師布置了一道課后練習題:

如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,點E、F分別在ABC上,∠1=∠2,FG⊥AB于點G,求證:△CDE≌△EGF

1)閱讀理解,完成解答

本題證明的思路可用下列框圖表示:

根據上述思路,請你完整地書寫這道練習題的證明過程;

2)特殊位置,證明結論

CE平分∠ACD,其余條件不變,求證:AE=BF;

3)知識遷移,探究發(fā)現(xiàn)

如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,若點EDB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AEBF的數量關系.(不必寫解答過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數表達式;

(2)設直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直線y=-kx+k-3與直線y=kx在同一坐標系中的大致圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖有一張簡易的活動小餐桌,現(xiàn)測得OA=OB=30cm,OC=OD=50cm,桌面離地面的高度為40cm,則兩條桌腿的張角COD的度數為______度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點DAB上,點EAC上,BE、CD相交于點O.

1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數;

2)試猜想∠BOC與∠A+B+C之間的關系,并證明你猜想的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016廣東省茂名市)如圖,一次函數y=x+b的圖象與反比例函數k為常數,k≠0)的圖象交于點A(﹣1,4)和點Ba,1).

(1)求反比例函數的表達式和a、b的值;

(2)若A、O兩點關于直線l對稱,請連接AO,并求出直線l與線段AO的交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,C=60°,我們把菱形ABCD的對稱中心O稱作菱形的中心.菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點旋轉60°叫一次操作,則經過1次這樣的操作菱形中心O所經過的路徑長為 ;經過3n(n為正整數)次這樣的操作菱形中心O所經過的路徑總長為 .(結果都保留π

查看答案和解析>>

同步練習冊答案