【題目】已知二次函數(shù)y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四個命題,則一定正確命題的序號是( )
①x=1是二次方程ax2+bx+c=0的一個實數(shù)根;
②二次函數(shù)y=ax2+bx+c的開口向下;
③二次函數(shù)y=ax2+bx+c的對稱軸在y軸的左側(cè);
④不等式4a+2b+c>0一定成立.
A. ①② B. ①③ C. ①④ D. ③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.
(1)分別求出A與C,A與D間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).
(2)已知距離觀測點D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店王阿姨到水果批發(fā)市場打算購進(jìn)一種水果銷售,經(jīng)過還價,實際價格每千克比原來少2元,發(fā)現(xiàn)原來買這種80千克的錢,現(xiàn)在可買88千克。
(1)現(xiàn)在實際這種每千克多少元?
(2)準(zhǔn)備這種,若這種的量y(千克)與單價x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系。
①求y與x之間的函數(shù)關(guān)系式;
②請你幫拿個主意,將這種的單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=收入-進(jìn)貨金額)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的價格標(biāo)簽已丟失,售貨員只知道”它的進(jìn)價為80元,打七折出售后,仍可獲利5%”你認(rèn)為售貨員應(yīng)標(biāo)在標(biāo)簽上的價格為( )
A. 110元B. 120元C. 130元D. 140元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將拋物線y=2(x﹣1)2+1先向左平移2個單位,再向上平移3個單位,則平移后拋物線的表達(dá)式是( )
A.y=2(x+1)2+4B.y=2(x﹣1)2+4
C.y=2(x+2)2+4D.y=2(x﹣3)2+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查得知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關(guān)于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com