已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長(zhǎng)為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法;
由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(______,0)
∵拋物線的對(duì)稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長(zhǎng)為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.
(1)∵y=x2-(2m+4)x+m2-10
=[x-(m+2)]2-4m-14,
∴頂點(diǎn)C的坐標(biāo)為(m+2,-4m-14).

(2)由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(m+2,0),
∵拋物線的對(duì)稱性及AB=2
2

∴AD=DB=|xA-xD|=
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,
得到關(guān)于m的方程0=(
2
2+(-4m-14)②
解得m=-3,
當(dāng)m=-3時(shí),拋物線y=x2+2x-1與x軸有交點(diǎn),
且AB=2
2
,符合題意.
所求拋物線的解析式為y=x2+2x-1.
步驟①的解題依據(jù):拋物線上一點(diǎn)的坐標(biāo)滿足此函數(shù)解析式;
步驟②的解題方法:代入法

(3)∵△ABC是等邊三角形,
∴由(1)知CD=|-4m-14|=4m+14(-4m-14<0),
AD=DB=
1
3
CD=
1
3
(4m+14)(-4m-14<0),
∵點(diǎn)A(xA,0)在拋物線上,
∴0=(xA-h)2+k.
∵h(yuǎn)=xC=xD,將|xA-xD|=
1
3
(4m+14)代入上式,
得0=
1
3
(4m+14)2-4m-14,
∵-4m-14<0,
1
3
(4m+14)-1=0,
解得m=-
11
4
,
當(dāng)m=-
11
4
時(shí),拋物線y=x2+
3
2
x
-
39
16
與x軸有交點(diǎn),且符合題意.
所求拋物線的解析式為y=x2+
3
2
x
-
39
16
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、已知:拋物線y=x2+px+q向左平移2個(gè)單位,再向下平移3個(gè)單位,得到拋物線y=x2-2x-1,則原拋物線的頂點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長(zhǎng)為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(
 
,0)
∵拋物線的對(duì)稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長(zhǎng)為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2+bx+c的圖象經(jīng)過(1,6)、(-1,2)兩點(diǎn).
求:這個(gè)拋物線的解析式、對(duì)稱軸及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=-x2-2(m-1)x+m+1與x軸交于a(-1,0),b(3,0),則m為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•集美區(qū)模擬)已知:拋物線y=x2+(m-1)x+m-2與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<1<x2
(1)求m的取值范圍;
(2)記拋物線與y軸的交點(diǎn)為C,P(x3,m)是線段BC上的點(diǎn),過點(diǎn)P的直線與拋物線交于點(diǎn)Q(x4,y4),若四邊形POCQ是平行四邊形,求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案