【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn)

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

【答案】解:(1)證明:四邊形ABCD是矩形,∴∠A=D=90°,AB=DC。

MA=MD,∴△ABM≌△DCM(SAS)。

(2)四邊形MENF是菱形。證明如下:

N、E、F分別是BC、BM、CM的中點(diǎn),NECM,NE=CM,MF=CM

NE=FM,NEFM。四邊形MENF是平行四邊形。

∵△ABM≌△DCM,BM=CM。

E、F分別是BM、CM的中點(diǎn),ME=MF

平行四邊形MENF是菱形。

(3)2:1

【解析】

試題(1)求出AB=DC,A=D=90°,AM=DM,根據(jù)全等三角形的判定定理推出即可

(2)根據(jù)三角形中位線定理求出NEMF,NE=MF,得出平行四邊形,求出BM=CM,推出ME=MF,根據(jù)菱形的判定推出即可

(3)當(dāng)AD:AB=2:1時,四邊形MENF是正方形,理由如下

M為AD中點(diǎn),AD=2AM。

AD:AB=2:1,AM=AB。

∵∠A=90°,∴∠ABM=AMB=45°

同理DMC=45°。

∴∠EMF=180°-45°-45°=90°。

四邊形MENF是菱形,菱形MENF是正方形。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請根據(jù)圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時間有多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C的“完美點(diǎn)”的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PA﹣PB|=2,則稱點(diǎn)P為⊙C的“完美點(diǎn)”,如圖為⊙C及其“完美點(diǎn)”P的示意圖.

(1)當(dāng)⊙O的半徑為2時,
①點(diǎn)M( ,0)⊙O的“完美點(diǎn)”,點(diǎn)N(0,1)⊙O的“完美點(diǎn)”,點(diǎn)T(﹣ ,﹣ ⊙O的“完美點(diǎn)”(填“是”或者“不是”);
②若⊙O的“完美點(diǎn)”P在直線y= x上,求PO的長及點(diǎn)P的坐標(biāo);
(2)⊙C的圓心在直線y= x+1上,半徑為2,若y軸上存在⊙C的“完美點(diǎn)”,求圓心C的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,1),取一點(diǎn)B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點(diǎn)B作x軸的垂線l2 , 記l1 , l2的交點(diǎn)為P.

(1)當(dāng)b=3時,在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點(diǎn)P,并把這些點(diǎn)用平滑的曲線連接起來發(fā)現(xiàn):這些點(diǎn)P竟然在一條曲線L上!
①設(shè)點(diǎn)P的坐標(biāo)為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
②設(shè)點(diǎn)P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當(dāng)d1+d2=8時,求點(diǎn)P的坐標(biāo);
③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點(diǎn),直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的一半長為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連結(jié)CD,若AC=5,AB=11,則△ACD的周長為( )

A.11
B.16
C.21
D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)QE、F分別在BC、ABAC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

(1)當(dāng)AE=8時,求EF的長;

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時,y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運(yùn)動(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時停止運(yùn)動),設(shè)運(yùn)動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C、D是坐標(biāo)軸上的點(diǎn)且點(diǎn)C坐標(biāo)是(0,﹣1),AB=5,點(diǎn)(a,b)在如圖所示的陰影部分內(nèi)部(不包括邊界),已知OA=OD=4,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動開始加熱[此過程中水溫y(℃)與開機(jī)時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機(jī)又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機(jī)時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機(jī)內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.

(1)求∠BCD的度數(shù);

(2)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案