【題目】如圖,在△ABC中,∠ACB 90,AC3,CB5,點D是CB邊上的一個動點,將線段AD繞著點D 順時針旋轉90,得到線段DE,連結BE,則線段BE的最小值等于__________.
【答案】
【解析】
根據(jù)題意過E作EF⊥BC于F,根據(jù)余角的性質得到∠DEF=∠ADC,根據(jù)全等三角形的性質得到DF=AC=3,EF=CD,設CD=x,根據(jù)勾股定理得到BE2=x2+(2-x)2=2(x-1)2+2,即可得到結論.
解:過E作EF⊥BC于F,
∵∠C=∠ADE=90°,
∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,
∴∠DEF=∠ADC,
在△EDF和△DAC中,,
∴△EDF≌△DAC(AAS),
∴DF=AC=3,EF=CD,
設CD=x,則BE2=x2+(2-x)2=2(x-1)2+2,
∴BE2的最小值是2,
∴BE的最小值是.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在銳角△ABC中,D、E分別是AB、BC的中點,點F在AC上,且滿足∠AFE=∠A,DM∥EF交AC于點M.
(1)證明:DM=DA;
(2)如圖2,點G在BE上,且∠BDG=∠C,求證:△DEG∽△ECF;
(3)在圖2中,取CE上一點H,使得∠CFH=∠B,若BG=3,求EH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲車從A地到B地,乙車從B地到A地,乙車先出發(fā)先到達,甲乙兩車之間的距離y(千米)與行駛的時間x(小時)的函數(shù)關系如圖所示,則下列說法中不正確的是( 。
A.甲車的速度是80km/hB.乙車的速度是60km/h
C.甲車出發(fā)1h與乙車相遇D.乙車到達目的地時甲車離 B地10km
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線11:y=2x+3,直線12:y=2x﹣3.
(1)分別求直線11與x軸、直線12與AB的交點D和E的坐標;
(2)已知點M在矩形ABCD內部,且是直線12上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線11和直線12上的點所組成的圖形稱為圖形F.已知矩形ANPQ的頂點N在圖形F上,且在AP的上方,Q是坐標平面內的點,設N點的橫坐標為x,請直接寫出x的取值范圍(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.
(1)求拋物線的解析式;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當點P運動到點E時,求△PCD的面積;
(3)點N在拋物線對稱軸上,點M在x軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸,y軸分別交于點A,點B,拋物線經(jīng)過A,B與點.
(1)求拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A,B重合),過點P作x軸的垂線,垂足為D,交線段AB于點E.設點P的橫坐標為m.
①求的面積y關于m的函數(shù)關系式,當m為何值時,y有最大值,最大值是多少?
②若點E是垂線段PD的三等分點,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王是“新星廠”的一名工人,請你閱讀下列信息:
信息一:工人工作時間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關系見下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD中,,,AD=CD,對角線AC,BD相交于點O,且BD平分∠ABC,過點A作,垂足為H.
(1)求證:;
(2)判斷線段BH,DH,BC之間的數(shù)量關系;并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市特產(chǎn)大閘蟹,2016年的銷售額是億元,因生態(tài)優(yōu)質美譽度高,銷售額逐年增加2018年的銷售額達億元,若2017、2018年每年銷售額增加的百分率都相同.
(1)求平均每年銷售額增加的百分率;
(2)該市這年大閘蟹的總銷售額是多少億元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com