如圖,以正方形ABCD的一邊CD為邊,向形外作等邊三角形CDE,連接AC、AE,則下列結(jié)論錯(cuò)誤的是( 。
A.∠ACE=105°
B.∠ADE=150°
C.∠DEA=15°
D.△EFC的面積大于△ACF的面積

根據(jù)題意,四邊形ABCD是正方形,三角形CDE為等邊三角形,
∴∠ACE=45°+60°=105°,
∠ADE=90°+60°=150°,
∠DEA=
180°-150°
2
=15°;
所以,選項(xiàng)A、B、C正確;
∵S△ACF=
1
2
×CF×AD,S△EFC=
1
2
×CF×
3
2
AD;
AD>
3
2
AD;
即△EFC的面積小于△ACF的面積;故選項(xiàng)D錯(cuò)誤;
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形的邊長(zhǎng)為6,經(jīng)過點(diǎn)(0,-4)的直線,把正方形分成面積相等的兩部分,則直線的函數(shù)解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是(  )
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD的邊BC的延長(zhǎng)線上取一點(diǎn)E,使CE=AC,AE交CD于點(diǎn)F.那么,∠ACB=______°,∠E=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在正方形ABCD中,M為AB的中點(diǎn),E為AB延長(zhǎng)線上一點(diǎn),MN⊥DM,且交∠CBE的平分線于點(diǎn)N.
(1)DM與MN相等嗎?試說明理由.
(2)若將上述條件“M為AB的中點(diǎn)”改為“M為AB上任意一點(diǎn)”,其余條件不變,如圖(2),則DM與MN相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),P是對(duì)角線AC上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥CD于點(diǎn)F.如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),顯然有DF=CF.
(1)如圖2,若點(diǎn)P在線段AO上(不與點(diǎn)A、O重合),PE⊥PB且PE交CD于點(diǎn)E.
①求證:DF=EF;
②寫出線段PC、PA、CE之間的一個(gè)等量關(guān)系,并證明你的結(jié)論;
(2)若點(diǎn)P在線段OC上(不與點(diǎn)O、C重合),PE⊥PB且PE交直線CD于點(diǎn)E.請(qǐng)完成圖3并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫出相應(yīng)的結(jié)論.(所寫結(jié)論均不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四邊形BEOF中,正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,邊長(zhǎng)分別為4和8的兩個(gè)正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長(zhǎng)交EG于點(diǎn)T,交FG于點(diǎn)P,則GT=( 。
A.
2
B.2
2
C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
5
.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為
2
;③EB⊥ED;④S△APD+S△APB=1+
6
;⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案