【題目】化簡求值:

(1),其中;

(2)若,且,求的值。

【答案】(1);(2)3

【解析】1)先算乘法,再合并同類項,最后代入求出即可;

(2)根據(jù)(x+2)(y+2)=3即可求得xy的值,根據(jù)x+y=1兩邊同時平方即可求得x2+y2,代入即可求得所求的式子的值.

(1)(x+2)2+(2x+1)(2x-1)-4x(x+1)

=x2+4x+4+4x2-1-4x2-4x

=x2+3,

x=-2時,原式=4+3=7.

(2)x+y=1,

x2+y2+2xy=1,

x2+y2=1-2xy,

(x+2)(y+2)=3,

xy+(x+y)+4=3,

xy+1+4=3,

xy=-2,

x2+xy+y2=1-2xy+xy=1-xy=1-(-2)=3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)解方程: + =2
(2)如圖,在⊙O中,OA⊥OB,∠A=20°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D是Rt△ABC的斜邊BC上的一點,tanB= ,BC=3BD,CE⊥AD,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四個長為m,寬為n的相同長方形按如圖方式拼成一個正方形.

(1).請用兩種不同的方法表示圖中陰影部分的面積.

方法①:

方法②:

(2). (1)可得出2, ,4mn這三個代數(shù)式之間的一個等量關系為:

(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數(shù)關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵居民節(jié)約用水,某市自來水公司對每戶月用水量進行計費,每戶每月用水量在規(guī)定噸數(shù)以下的收費標準相同;規(guī)定噸數(shù)以上的超過部分收費標準相同,以下是小明家月份用水量和交費情況:

月份

用水量(噸)

用(元)

根據(jù)表格中提供的信息,回答以下問題:

求出規(guī)定噸數(shù)和兩種收費標準;

若小明家月份用水噸,則應繳多少元?

若小明家月份繳水費元,則月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,O為正方形對角線的交點,BE平分DBC,交DC于點E,延長BC到點F,使CF=CE,連結DF,交BE的延長線于點G,連結OG

(1)求證:BCE≌△DCF

(2)判斷OG與BF有什么關系,證明你的結論

(3)若DF2=8-4,求正方形ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠倉庫儲存了部分原料,按原計劃每時消耗2 t,可用60 h.由于技術革新,實際生產(chǎn)能力有所提高,即每時消耗的原料量大于計劃消耗的原料量.設現(xiàn)在每時消耗原料x(單位:t),庫存的原料可使用的時間為y(單位:h).

(1)寫出y關于x的函數(shù)解析式,并求出自變量的取值范圍;

(2)若恰好經(jīng)過24 h才有新的原料進廠,為了使機器不停止運轉,則x應控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習冊答案