【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補(bǔ)的角是;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=x°時(shí),請(qǐng)直接寫(xiě)出∠DOE的度數(shù).
【答案】
(1)∠BOE、∠COE
(2)解:∵OD、OE分別平分∠AOC、∠BOC,
∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,
∴∠AOC=2×36°=72°,
∴∠BOC=180°﹣72°=108°,
∴∠COE= ∠BOC=54°,
∴∠DOE=∠COD+∠COE=90°
(3)解:當(dāng)∠AOD=x°時(shí),∠DOE=90°
【解析】解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴與∠AOE互補(bǔ)的角是∠BOE、∠COE;
故答案為∠BOE、∠COE;
(1)根據(jù)補(bǔ)角的定義知:與∠AOE互補(bǔ)的角有∠BOE、∠COE;(2)根據(jù)∠DOE的構(gòu)成∠DOE=∠COD+∠COE可求∠DOE的度數(shù);(3)方法同(2)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位選手各10次射擊的平均成績(jī)都是9.2環(huán),其中甲的成績(jī)的方差為0.015, 乙的成績(jī)的方差為0.035,丙的成績(jī)的方差為0.025,丁的成績(jī)的方差為0.027,由此可知
(A)甲的成績(jī)最穩(wěn)定 (B)乙的成績(jī)最穩(wěn)定
(C)丙的成績(jī)最穩(wěn)定 (D)丁的成績(jī)最穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=5cm,點(diǎn)C為直線AB上一點(diǎn),且BC=3cm,則線段AC的長(zhǎng)是( 。
A.2cm
B.8cm
C.9cm
D.2cm或8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過(guò)思考、討論、交流,得到以下思路:思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===.
思路二 利用科普書(shū)上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請(qǐng)解決下列問(wèn)題(上述思路僅供參考).
(1)類(lèi)比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線與雙曲線交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點(diǎn)坐標(biāo);
(2)如圖2,若C為x軸正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰直角△ACD,∠ACD=90°連OD,求∠AOD的度數(shù);
(3)如圖3,過(guò)點(diǎn)A作y軸的垂線交y軸于E,F(xiàn)為x軸負(fù)半軸上一點(diǎn),G在EF的延長(zhǎng)線上,以EG為直角邊作等腰Rt△EGH,過(guò)A作x軸垂線交EH于點(diǎn)M,連FM,等式AM=FM+OF是否成立?若成立,請(qǐng)證明:若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫(xiě)在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣2(x﹣1)2+3的圖象的頂點(diǎn)坐標(biāo)是( )
A. (1,3)B. (﹣1,3)C. (1,﹣3)D. (﹣1,﹣3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com