分析 (1)利用條件可證明△ACE≌△BCD,則可得到AE=BE,再利用線段的和差可證得結(jié)論AC=AD+AE;
(2)由條件可證明△ACE≌△BCD,同樣可以得到結(jié)論AC=AE-AD.
解答 解:
(1)結(jié)論:AC=AD+AE,
證明如下:
∵△ABC、△CDE為等邊三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
∴∠ECA+∠ACD=∠ACD+∠BCD,
∴∠ECA=∠BCD,
在△ACE和△BCD中
$\left\{\begin{array}{l}{AC=BC}\\{∠ECA=∠DCB}\\{EC=DC}\end{array}\right.$
∴△ACE≌△BCD(SAS),
∴AE=BD,
∴AC=AB=AD+BD=AD+AE;
(2)結(jié)論:AC=AE-AD,
理由如下:
同(1)可證明△ACE≌△BCD,
∴AE=BD,
∴AC=AB=BD-AD=AE-AD.
點(diǎn)評(píng) 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法是解題的關(guān)鍵,即SSS、SAS、ASA、AAS和HL.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com