分析:對(ay+bx)3-(ax+by)3利用立方差公式展開,(a3-b3)、(x3-y3)分別利用立方差公式展開,再提取公因式,即可求值.
解答:解:(ay+bx)3-(ax+by)3+(a3-b3)(x3-y3),
=(ay+bx-ax-by)[(ay+bx)2+(ay+bx)(ax+by)+(ax+by)2]+(a-b)(a2+ab+b2)(x-y)(x2+xy+y2),
=(x-y)(b-a)[(a2+b2)(x2+xy+y2)+ab(x2+4xy+y2)]-(b-a)(x-y)[(a2+b2)(x2+xy+y2)+ab(x2+xy+y2)],
=(x-y)(b-a)[ab•3xy],
=-3abxy(x-y)(a-b).
故答案是:-3abxy(x-y)(a-b).
點評:本題考查了立方公式.注意靈活運用立方差公式,此題繁瑣,但若有耐心,還是可以找出簡便算法的.