設(shè)函數(shù)f(x)=ax2+bx+c的圖象與兩直線y=x,y=x,均不相交.試證明對(duì)一切都有.
分析:因?yàn)閤∈R,故|f(x)|的最小值若存在,則最小值由頂點(diǎn)確定,故設(shè)f(x)=a(x-x0)2+f(x0).
證明:由題意知,a≠0.設(shè)f(x)=a(x-x0)2+f(x0),則
又二次方程ax2+bx+c=±x無(wú)實(shí)根,故
Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.
解題回顧:從上述幾個(gè)例子可以看出,在證明與二次函數(shù)有關(guān)的不等式問(wèn)題時(shí),如果針對(duì)題設(shè)條件,合理采取二次函數(shù)的不同形式,那么我們就找到了一種有效的證明途徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【例3】 設(shè)函數(shù)f(x)= -ax,其中a>0,求a的取值范圍,使函數(shù)f(x)在[0,+∞)上為單調(diào)函數(shù).
解:任取x1、x2∈[0,+∞)且x1<x2,則
f(x1)-f(x2)= --a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
(1)當(dāng)a≥1時(shí),∵<1,
又∵x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上為減函數(shù).
(2)當(dāng)0<a<1時(shí),在區(qū)間[0,+∞)上存在x1=0,x2=,滿足f(x1)=f(x2)=1,
∴0<a<1時(shí),f(x)在[0,+∞)上不是單調(diào)函數(shù).
評(píng)注: ①判斷單調(diào)性常規(guī)思路為定義法;②變形過(guò)程中<1利用了>|x1|≥x1, >x2這個(gè)結(jié)論;③從a的范圍看還需討論0<a<1時(shí)f(x)的單調(diào)性,這也是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【例3】 設(shè)函數(shù)f(x)= -ax,其中a>0,求a的取值范圍,使函數(shù)f(x)在[0,+∞)上為單調(diào)函數(shù).
解:任取x1、x2∈[0,+∞)且x1<x2,則
f(x1)-f(x2)= --a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
(1)當(dāng)a≥1時(shí),∵<1,
又∵x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上為減函數(shù).
(2)當(dāng)0<a<1時(shí),在區(qū)間[0,+∞)上存在x1=0,x2=,滿足f(x1)=f(x2)=1,
∴0<a<1時(shí),f(x)在[0,+∞)上不是單調(diào)函數(shù).
評(píng)注: ①判斷單調(diào)性常規(guī)思路為定義法;②變形過(guò)程中<1利用了>|x1|≥x1, >x2這個(gè)結(jié)論;③從a的范圍看還需討論0<a<1時(shí)f(x)的單調(diào)性,這也是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【例3】 設(shè)函數(shù)f(x)= -ax,其中a>0,求a的取值范圍,使函數(shù)f(x)在[0,+∞)上為單調(diào)函數(shù).
解:任取x1、x2∈[0,+∞)且x1<x2,則
f(x1)-f(x2)= --a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
(1)當(dāng)a≥1時(shí),∵<1,
又∵x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上為減函數(shù).
(2)當(dāng)0<a<1時(shí),在區(qū)間[0,+∞)上存在x1=0,x2=,滿足f(x1)=f(x2)=1,
∴0<a<1時(shí),f(x)在[0,+∞)上不是單調(diào)函數(shù).
評(píng)注: ①判斷單調(diào)性常規(guī)思路為定義法;②變形過(guò)程中<1利用了>|x1|≥x1, >x2這個(gè)結(jié)論;③從a的范圍看還需討論0<a<1時(shí)f(x)的單調(diào)性,這也是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【例3】 設(shè)函數(shù)f(x)= -ax,其中a>0,求a的取值范圍,使函數(shù)f(x)在[0,+∞)上為單調(diào)函數(shù).
解:任取x1、x2∈[0,+∞)且x1<x2,則
f(x1)-f(x2)= --a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
(1)當(dāng)a≥1時(shí),∵<1,
又∵x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上為減函數(shù).
(2)當(dāng)0<a<1時(shí),在區(qū)間[0,+∞)上存在x1=0,x2=,滿足f(x1)=f(x2)=1,
∴0<a<1時(shí),f(x)在[0,+∞)上不是單調(diào)函數(shù).
評(píng)注: ①判斷單調(diào)性常規(guī)思路為定義法;②變形過(guò)程中<1利用了>|x1|≥x1, >x2這個(gè)結(jié)論;③從a的范圍看還需討論0<a<1時(shí)f(x)的單調(diào)性,這也是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【例3】 設(shè)函數(shù)f(x)= -ax,其中a>0,求a的取值范圍,使函數(shù)f(x)在[0,+∞)上為單調(diào)函數(shù).
解:任取x1、x2∈[0,+∞)且x1<x2,則
f(x1)-f(x2)= --a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
(1)當(dāng)a≥1時(shí),∵<1,
又∵x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴a≥1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上為減函數(shù).
(2)當(dāng)0<a<1時(shí),在區(qū)間[0,+∞)上存在x1=0,x2=,滿足f(x1)=f(x2)=1,
∴0<a<1時(shí),f(x)在[0,+∞)上不是單調(diào)函數(shù).
評(píng)注: ①判斷單調(diào)性常規(guī)思路為定義法;②變形過(guò)程中<1利用了>|x1|≥x1, >x2這個(gè)結(jié)論;③從a的范圍看還需討論0<a<1時(shí)f(x)的單調(diào)性,這也是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com