【題目】在綜合實(shí)踐課上,老師以“含30°的三角板和等腰三角形紙片”為模具與同學(xué)們開(kāi)展數(shù)學(xué)活動(dòng).
已知,在等腰三角形紙片ABC中,CA=CB=5,∠ACB=120°,將一塊含30°角的足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖所示放置,頂點(diǎn)P在線段BA上滑動(dòng)(點(diǎn)P不與A,B重合),三角尺的直角邊PM始終經(jīng)過(guò)點(diǎn)C,并與CB的夾角∠PCB=α,斜邊PN交AC于點(diǎn)D.
(1)特例感知
當(dāng)∠BPC=110°時(shí),α= °,點(diǎn)P從B向A運(yùn)動(dòng)時(shí),∠ADP逐漸變 (填“大”或“小”).
(2)合作交流
當(dāng)AP等于多少時(shí),△APD≌△BCP,請(qǐng)說(shuō)明理由.
(3)思維拓展
在點(diǎn)P的滑動(dòng)過(guò)程中,△PCD的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出夾角α的大;若不可以,請(qǐng)說(shuō)明理由.
【答案】(1)40°,;(2)當(dāng)AP=5時(shí),△APD≌△BCP,理由詳見(jiàn)解析;(3)當(dāng)α=45°或90°時(shí),△PCD是等腰三角形.
【解析】
(1)先根據(jù)三角形內(nèi)角和定理求出∠B的度數(shù),再一次運(yùn)用三角形內(nèi)角和定理即可求出 的度數(shù);根據(jù)三角形內(nèi)角和定理即可判斷點(diǎn)P從B向A運(yùn)動(dòng)時(shí),∠ADP的變化情況;
(2)先根據(jù)三角形外角等于與它不相鄰的兩個(gè)內(nèi)角和得到∠APC=∠B+α=30°+∠PCB,再證明∠APD=∠BCP,根據(jù)全等三角形的判定定理,即可得到當(dāng)AP=5時(shí),△APD≌△BCP.
(3)根據(jù)等腰三角形的判定,分三種情況討論即可得到;
解:(1)∵CA=CB=5,∠ACB=120°,
∴∠B=∠A= =30°,
∴ ,
∵三角尺的直角邊PM始終經(jīng)過(guò)點(diǎn)C,
∴再移動(dòng)的過(guò)程中,∠APN不斷變大,∠A的度數(shù)沒(méi)有變化,
∴根據(jù)三角形的內(nèi)角和定理,得到∠ADP逐漸變小;
故答案為:40°,。
(2)當(dāng)AP=5時(shí),△APD≌△BCP.
理由如下:∵∠ACB=120°,CA=CB,
∴∠A=∠B=30°.
又∵∠APC是△BPC的一個(gè)外角,
∴∠APC=∠B+α=30°+∠PCB,
∵∠APC=∠DPC+∠APD=30°+∠APD,
∴∠APD=∠BCP,
當(dāng)AP=BC=5時(shí),
在△APD和△BCP中,
∴△APD≌△BCP(ASA);
(3)△PCD的形狀可以是等腰三角形.
根據(jù)題意得:∠PCD=120°﹣α,∠CPD=30°,
有以下三種情況:
①當(dāng)PC=PD時(shí),△PCD是等腰三角形,
∴∠PCD=∠PDC==75°,即120°﹣α=75°,
∴α=45°;
②當(dāng)DP=DC時(shí),△PCD是等腰三角形,
∴∠PCD=∠CPD=30°,即120°﹣α=30°,
∴α=90°;
③當(dāng)CP=CD時(shí),△PCD是等腰三角形,
∴∠CDP=∠CPD=30°,
∴∠PCD=180°﹣2×30°=120°,
即120°﹣α=120°,
∴α=0°,
此時(shí)點(diǎn)P與點(diǎn)B重合,不符合題意,舍去.
綜上所述,當(dāng)α=45°或90°時(shí),△PCD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)O是對(duì)角線BD中點(diǎn),點(diǎn)E在邊BC上,EO的延長(zhǎng)線與邊AD交于點(diǎn)F,連接BF、DE,如圖1.
(1)求證:四邊形BEDF是平行四邊形;
(2)在(1)中,若DE=DC,∠CBD=45°,過(guò)點(diǎn)C作DE的垂線,與DE、BD、BF分別交于點(diǎn)G、H、R,如圖2.
①當(dāng)CD=6,CE=4時(shí),求BE的長(zhǎng).
②探究BH與AF的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,把4個(gè)長(zhǎng)為a,寬為b的長(zhǎng)方形拼成如圖②所示的圖形,且a=3b,則根據(jù)這個(gè)圖形不能得到的等式是( )
A.(a+b)2=4ab+(a-b)2B.4b2+4ab=(a+b)2
C.(a-b)2=16b2-4abD.(a-b)2+12a2=(a+b)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=2x2+bx﹣1.
(1)求證:無(wú)論b取什么值,二次函數(shù)y=2x2+bx﹣1圖象與x軸必有兩個(gè)交點(diǎn).
(2)若兩點(diǎn)P(﹣3,m)和Q(1,m)在該函數(shù)圖象上.
①求b、m的值;
②將二次函數(shù)圖象向上平移多少單位長(zhǎng)度后,得到的函數(shù)圖象與x軸只有一個(gè)公共點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
閱讀以下材料:
定義:兩邊分別相等且?jiàn)A角互補(bǔ)的兩個(gè)三角形叫做“互補(bǔ)三角形”.
用符號(hào)語(yǔ)言表示為:如圖①,在△ABC與△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC與△DEF是互補(bǔ)三角形.
反之,“如果△ABC與△DEF是互補(bǔ)三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.
自主探究
利用上面所學(xué)知識(shí)以及全等三角形的相關(guān)知識(shí)解決問(wèn)題:
(1)性質(zhì):互補(bǔ)三角形的面積相等
如圖②,已知△ABC與△DEF是互補(bǔ)三角形.
求證:△ABC與△DEF的面積相等.
證明:分別作△ABC與△DEF的邊BC,EF上的高線,則∠AGC=∠DHE=90°.
…… (將剩余證明過(guò)程補(bǔ)充完整)
(2)互補(bǔ)三角形一定不全等,請(qǐng)你判斷該說(shuō)法是否正確,并說(shuō)明理由,如果不正確,請(qǐng)舉出一個(gè)反例,畫(huà)出示意圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為該拋物線的對(duì)稱(chēng)軸上一點(diǎn),當(dāng)點(diǎn)D到直線BC和到x軸的距離相等時(shí),則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)求出b,c的值,并寫(xiě)出此二次函數(shù)的解析式;
(2)根據(jù)圖象,寫(xiě)出函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形中,,點(diǎn)在邊上,由往運(yùn)動(dòng),速度為,運(yùn)動(dòng)時(shí)間為秒,將沿著翻折至,點(diǎn)對(duì)應(yīng)點(diǎn)為,所在直線與邊交與點(diǎn),
(1)如圖,當(dāng)時(shí),求證:;
(2)如圖,當(dāng)為何值時(shí),點(diǎn)恰好落在邊上;
(3)如圖,當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā), 在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,連接.
若,求的值;
若與相似,求的值;
當(dāng)為何值時(shí),四邊形的面積為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com