如圖,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;
(1)請(qǐng)說(shuō)明∠EAB=∠FAC的理由;
(2)△ABC可以經(jīng)過(guò)圖形的變換得到△AEF,請(qǐng)你描述這個(gè)變換;
(3)求∠AMB的度數(shù).

解:(1)∵∠B=∠E,AB=AE,BC=EF,
∴△ABC≌△AEF,
∴∠C=∠F,∠BAC=∠EAF,
∴∠BAC-∠PAF=∠EAF-∠PAF,
∴∠BAE=∠CAF=25°;

(2)通過(guò)觀察可知△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)25°,可以得到△AEF;

(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,
∴∠AMB=∠C+∠CAF=57°+25°=82°.
分析:(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;
(2)通過(guò)觀察可知△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)25°,可以得到△AEF;
(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根據(jù)三角形外角的性質(zhì)可求∠AMB.
點(diǎn)評(píng):本題利用了全等三角形的判定、性質(zhì),三角形外角的性質(zhì),等式的性質(zhì)等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知△ABC和△DEF,∠A=∠D=90°,且△ABC與△DEF不相似,問(wèn)是否存在某種直線分割,使△ABC所分割成的兩個(gè)三角形與△DEF所分割成的兩個(gè)三角形分別對(duì)應(yīng)相似?
(1)如果存在,請(qǐng)你設(shè)計(jì)出分割方案,并給出證明;如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;
(2)這樣的分割是唯一的嗎?若還有,請(qǐng)?jiān)僭O(shè)計(jì)出一種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC和△DEF是兩個(gè)邊長(zhǎng)都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著B(niǎo)E的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)t為何值時(shí),?ADFC是菱形?請(qǐng)說(shuō)明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,已知△ABC和△A″B″C″及點(diǎn)O.
(1)畫(huà)出△ABC關(guān)于點(diǎn)O對(duì)稱的△A′B′C′;
(2)若△A″B″C″與△A′B′C′關(guān)于點(diǎn)O′對(duì)稱,請(qǐng)確定點(diǎn)O′的位置;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知△ABC和兩條相交于O點(diǎn)且?jiàn)A角為60°的直線m、n.
(1)畫(huà)出△ABC關(guān)于直線m的對(duì)稱△A1B1C 1,再畫(huà)出△A1B1C 1關(guān)于直線n的對(duì)稱△A2B2C 2;
(2)你認(rèn)為△A2B2C 2可視為△ABC繞著哪一點(diǎn)旋轉(zhuǎn)多少度得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南崗區(qū)二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案