(2009•河西區(qū)一模)如圖一,已知點(diǎn)P是邊長為a的等邊△ABC內(nèi)任意一點(diǎn),點(diǎn)P到三邊的距離PD、PE、PF的長分別記為h1,h2,h3,則h1,h2,h3之間有什么關(guān)系呢?
分析:連接PA、PB、PC,則△ABC被分割成三個(gè)三角形,根據(jù):
S△PAB+S△PBC+S△PAC=S△ABC,即:,可得
問題1:若點(diǎn)P是邊長為a的等邊△ABC外一點(diǎn)(如圖二所示位置),點(diǎn)P到三邊的距離PD、PE、PF的長分別記為h1,h2,h3.探索h1,h2,h3之間有什么關(guān)系呢?并證明你的結(jié)論;
問題2:如圖三,正方形ABCD的邊長為a,點(diǎn)P是BC邊上任意一點(diǎn)(可與B、C重合),B、C、D三點(diǎn)到射線AP的距離分別是h1,h2,h3,設(shè)h1+h2+h3=y,線段AP=x,求y與x的函數(shù)關(guān)系式,并求y的最大值與最小值.

【答案】分析:(1)探索h1,h2,h3之間的關(guān)系,可以根據(jù)等量關(guān)系S四邊形ABCP=S△APC+S△ABC得出等式,解決問題;
(2)連接DP、AC,可知S四邊形ABCP=S△APB+S△ADP+S△DCP,∵S△DCP=S△ACP,即S四邊形ABCP=S△APB+S△ADP+S△ACP的等量關(guān)系,列出方程,得到y(tǒng)與x的函數(shù)關(guān)系式,按照自變量的取值范圍求出y的最大值與最小值.
解答:解:問題1:h1+h2-h3=(2分)
理由:連接PA、PB、PC
∵PE⊥BC,PD⊥BA,且△ABC是邊長為a的等邊三角形
∴S△PAB=,S△PBC=
∴S四邊形ABCP=S△PAB+S△PBC=+(2分)
又∵S四邊形ABCP=S△APC+S△ABC=(1分)
+=即:h1+h2-h3=;(1分)


問題2:連接DP、AC
易求:S△APB+S△ADP+S△ACP=(2分)
易證:S△DCP=S△ACP(同底等高)(2分)
而S正方形ABCD=S△APB+S△ADP+S△DCP

∴y=(a≤x≤a)(2分)
∵2a2>0
∴y隨x的增大而減少
∴當(dāng)x=a時(shí),y最小=a,當(dāng)x=a時(shí),y最大=2a.(2分)
點(diǎn)評(píng):此題是一個(gè)綜合性很強(qiáng)的題目,主要考查等邊三角形的性質(zhì)、解反比例函數(shù)等知識(shí).難度較大,有利于培養(yǎng)同學(xué)們鉆研和探索問題的精神.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)下列不等關(guān)系表示正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)如圖所示,在半徑為r的圓內(nèi)作一個(gè)內(nèi)接正三角形,依次再作內(nèi)切圓,那么圖中最小的圓的半徑是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為
24
24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)如圖,正方形的邊長為a,分別以正方形的四個(gè)頂點(diǎn)為圓心,以
a
2
為半徑作圓,則圖中的陰影面積為
4-π
4
a2
4-π
4
a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)如圖,將△BCE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到△ACD,AC交BE與點(diǎn)F,AD交CE于點(diǎn)G,AD交BE于點(diǎn)P,連接AB和ED.
(1)判斷△ABC和△ECD的形狀,并說明理由;
(2)求證:△ABF∽△CGD.

查看答案和解析>>

同步練習(xí)冊(cè)答案