【題目】如圖,Rt△OAB中,∠AOB=90°,OA=6,OB=8,P、Q分別是OB、OA上的動點,滿足BP=OQ,C為PQ中點,當Q從O點運動到點A點時,則C點所走過的路徑長為

【答案】3
【解析】解:如圖,

當點Q與O重合,點P與B重合,此時點C與OB的中點E重合,

當點Q與A重合時,點P在點M處,BM=OA=6,此時點C在AM的中點F處,由此可知點C的運動軌跡是線段FE(紅線),

在BO上截取BN=OM=2,則ME=EN,AF=FM,

∴EF= AN,

在Rt△AON中,AN= = =6

∴EF= AN=3 ,

∴點C的運動軌跡的長為3 ,

所以答案是3

【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,CA=CB,在△AED中,DA=DE,點D,E分別在CA,AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是;

(2)若∠ACB=∠ADE=120°,將△AED繞點A旋轉(zhuǎn)至如圖②所示的位置,則CD與BE的數(shù)量關(guān)系是;,

(3)若∠ACB=∠ADE=2α(0°<α<90°),將△AED繞點A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小滿的一次作業(yè),老師說小滿的解題過程不完全正確,并在作業(yè)旁寫出了批改.

長跑比賽中,張華跑在前面,在離終點時他以的速度向終點沖刺,在他身后的李明需以多快的速度同時開始沖刺,才能在張華之前到達終點?

解:設李明以的速度開始沖刺,

依題意,得,

兩邊同時除以25,得

答:李明需以大于的速度同時開始沖刺,才能在張華之前到達終點.

請回答:必須添加根據(jù)實際意義可知,這個條件的理由是_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校男子足球隊的年齡分布如條形圖所示,則這些隊員年齡的眾數(shù)、中位數(shù)、平均數(shù)分別是( )

A.15、14、15
B.14、15、15
C.15、15、14
D.15、15、15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知1輛甲型客車和1輛乙型客車共可載客75人.已知1輛甲型客車和2輛乙型客車共可載客105人.某學校計劃租用兩種型號客車送234名學生和6名老師集體外出活動.從安全角度考慮每輛車上至少要有1名老師,并且總費用不超過2280元.
(1)求每輛甲型客車和每輛乙型客車分別可載多少人?
(2)共需租輛客車?
(3)若每輛甲型客車和每輛乙型客車的租金分別為400元和280元,設租甲型客車x輛,總費用為W元,請你給出最節(jié)省的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是小明家和學校所在地的簡單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點C為OP的中點,回答下列問題:

(1)圖中距小明家距離相同的是哪些地方?

(2)學校、商場和停車場分別在小明家的什么方位?

(3)如果學校距離小明家400m,那么商場和停車場分別距離小明家多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在線段上,連接

1)如圖1,若求線段的長;

2)如圖1,若求證:

3)如圖2,在第(2)問的條件下,若點的延長線上時,連接的面積為的面積為的面積為.直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

同步練習冊答案