分析 (1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC-∠P,可得出OA⊥PA,從而得出結(jié)論;
(2)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E.在Rt△BCE中,∠B=60°,BC=2$\sqrt{3}$,于是得到BE=$\frac{1}{2}$BC=$\sqrt{3}$,CE=3,根據(jù)勾股定理得到AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5,于是得到AP=AC=5.解直角三角形即可得到結(jié)論.
解答 (1)證明:連接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC-∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切線;
(2)解:過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E.
在Rt△BCE中,∠B=60°,BC=2$\sqrt{3}$,
∴BE=$\frac{1}{2}$BC=$\sqrt{3}$,CE=3,
∵AB=4+$\sqrt{3}$,
∴AE=AB-BE=4,
∴在Rt△ACE中,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5,
∴AP=AC=5.
∴在Rt△PAO中,OA=$\frac{5\sqrt{3}}{3}$,
∴⊙O的半徑為$\frac{5\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了切線的判定及圓周角定理,解答本題的關(guān)鍵是掌握切線的判定定理、圓周角定理及含30°直角三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com