【題目】某快遞公司每天上午9:00-10:00為集中攬件和派件時段,甲倉庫用來攬收快件,乙倉庫用來派發(fā)快件,該時段內(nèi)甲、乙兩倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)圖象如圖所示,那么當(dāng)兩倉庫快遞件數(shù)相同時,此刻的時間為__________;
【答案】9:20
【解析】
分別求出甲、乙兩倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式,求出兩條直線的交點(diǎn)坐標(biāo)即可.
解:設(shè)甲倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式為:y1=k1x+40,根據(jù)題意得60k1+40=400,解得k1=6,
∴y1=6x+40,
設(shè)乙倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式為:y2=k2x+240,根據(jù)題意得60k2+240=0,解得k2=-4,
∴y2=-4x+240,
聯(lián)立,解得,
∴此刻的時間為9:20.
故答案為:9:20
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個兩位數(shù),用表示十位上的數(shù),用表示個位上的數(shù).
(1)用含,的式子表示這個兩位數(shù);
(2)把這個兩位數(shù)個位上的數(shù)字與十位上的數(shù)字交換位置,得到一個新的兩位數(shù).
①若原數(shù)個位上的數(shù)是十位上的數(shù)的3倍,且新數(shù)與原數(shù)的差是36,求原來的兩位數(shù)是多少?
②列式表示所得新數(shù)的平方與原數(shù)的平方的差(結(jié)果要化簡),并判斷其是11的倍數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費(fèi)能力等因素的影響,某品牌電腦專營店設(shè)有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機(jī)抽取所記錄的50臺電腦的款式,統(tǒng)計各種款式電腦的銷售數(shù)量,如表2所示.
表1:四種款式電腦的利潤
電腦款式 | A | B | C | D |
利潤(元/臺) | 160 | 200 | 240 | 320 |
表2:甲、乙兩店電腦銷售情況
電腦款式 | A | B | C | D |
甲店銷售數(shù)量(臺) | 20 | 15 | 10 | 5 |
乙店銷售數(shù)量(臺)8 | 8 | 10 | 14 | 18 |
試運(yùn)用統(tǒng)計與概率知識,解決下列問題:
(1)從甲店每月售出的電腦中隨機(jī)抽取一臺,其利潤不少于240元的概率為 ;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當(dāng).現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認(rèn)為應(yīng)對哪家分店作出暫停營業(yè)的決定?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小張利用暑假50天在一超市勤工儉學(xué),被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關(guān)系如下表:
x(天) | 1 | 2 | 3 | … | 50 |
p(件) | 118 | 116 | 114 | … | 20 |
銷售單價q(元/件)與x滿足:當(dāng)1≤x<25時q=x+60;當(dāng)25≤x≤50時q=40+.
(1)請分析表格中銷售量p與x的關(guān)系,求出銷售量p與x的函數(shù)關(guān)系.
(2)求該超市銷售該新商品第x天獲得的利潤y元關(guān)于x的函數(shù)關(guān)系式.
(3)這50天中,該超市第幾天獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在長方形的邊上.
(1)用圓規(guī)和無刻度的直尺在長方形的內(nèi)部作∠ABC=∠ABO;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,若BE是∠CBD的角平分線,探索AB與BE的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形AOBC中,OB=4,OA=3.分別以OB、OA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個動點(diǎn)(不與B、C重合).過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.
(1)當(dāng)點(diǎn)F運(yùn)動到邊BC的中點(diǎn)時,點(diǎn)E的坐標(biāo)為__________;
(2)連接EF,求∠EFC的正切值;
(3)如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求BG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課外閱讀情況,七(1)班針對“你最喜愛的課外閱讀書目”進(jìn)行調(diào)查(每名學(xué)生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
男、女生所選類別人數(shù)統(tǒng)計表
類別 | 男生(人) | 女生(人) |
文學(xué)類 | 12 | 8 |
史學(xué)類 | 5 | |
科學(xué)類 | 6 | 5 |
哲學(xué)類 | 2 |
根據(jù)以上信息解決下列問題
(1) , ;
(2)扇形統(tǒng)計圖中“科學(xué)類”所對應(yīng)扇形圓心角度數(shù)為 ;
(3)從選哲學(xué)類的學(xué)生中,隨機(jī)選取兩名學(xué)生參加學(xué)校團(tuán)委組織的辯論賽,請用樹狀圖或列表法求出所選取的兩名學(xué)生都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)動點(diǎn)P運(yùn)動到什么位置時,△PBC面積最大,求出此時P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD>AB,連接AC,將線段AC繞點(diǎn)A順時針旋轉(zhuǎn)90得到線段AE,平移線段AE得到線段DF(點(diǎn)A與點(diǎn)D對應(yīng),點(diǎn)E與點(diǎn)F對應(yīng)),連接BF,分別交直線AD,AC于點(diǎn)G,M,連接EF.
(1) 依題意補(bǔ)全圖形;
(2) 求證:EG⊥AD;
(3) 連接EC,交BF于點(diǎn)N,若AB=2,BC=4,設(shè)MB=a,NF=b,試比較與之間的大小關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com