精英家教網(wǎng)我們已經(jīng)知道,如果線段MN被點(diǎn)P分成線段MP和PN,且
MP
MN
=
PN
MP
,那么稱線段MN被點(diǎn)P黃金分割,點(diǎn)P叫做線段MN的黃金分割點(diǎn),MP與MN的比叫做黃金比.通過(guò)計(jì)算可知黃金比為
5
-1
2
.若一個(gè)矩形的短邊與長(zhǎng)邊之比等于黃金比,則稱這個(gè)矩形為黃金矩形.已知圖中正方形ABCD的邊長(zhǎng)為1,請(qǐng)你以AD為短邊,用尺規(guī)作一個(gè)黃金矩形,要求保留作圖痕跡并簡(jiǎn)要寫(xiě)出作法,不要求證明.
分析:此題主要是確定矩形的長(zhǎng)邊,根據(jù)黃金比,只需保證較長(zhǎng)的邊等于較短邊的
5
+1
2
即可.這里可以熟練運(yùn)用勾股定理進(jìn)行分析.
解答:精英家教網(wǎng)解:作法:(1)作AB的中點(diǎn)E;
(2)連接EC;
(3)在AB的延長(zhǎng)線上截。篍F=EC;
(4)過(guò)F點(diǎn)作FG⊥AF交DC的延長(zhǎng)線于點(diǎn)G,
則四邊形AFGD就是所求作的黃金矩形.
點(diǎn)評(píng):此題主要是根據(jù)勾股定理分析出
5
2
的長(zhǎng),用尺規(guī)完成即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在八年級(jí)上冊(cè)我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說(shuō)法:
①D是AB中點(diǎn);②E是AC中點(diǎn);③DE=
12
BC;④DE∥BC.
請(qǐng)你以其中的兩種說(shuō)法為條件(①和②不能同時(shí)作為條件),其余兩種說(shuō)法為結(jié)論,構(gòu)造一個(gè)命題;并判定你所構(gòu)造的命題是否正確.如果正確請(qǐng)說(shuō)明理由;如果不正確,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)我們已經(jīng)知道:在△ABC中,如果AB=AC,則∠B=∠C.下面我們繼續(xù)
研究:如圖①,在△ABC中,如果AB>AC,則∠B與∠C的大小關(guān)系如何?
為此,我們把AC沿∠BAC的平分線翻折,因?yàn)锳B>AC,所以點(diǎn)C落在AB邊的點(diǎn)D處,如圖②所示,然后把紙展平,連接DE.接下來(lái),你能推出∠B與∠C的大小關(guān)系了嗎?試寫(xiě)出說(shuō)理過(guò)程.
(2)如圖③,在△ABC中,AE是角平分線,且∠C=2∠B.
求證:AB=AC+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在八年級(jí)上冊(cè)我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說(shuō)法:
①D是AB中點(diǎn);②E是AC中點(diǎn);③DE=數(shù)學(xué)公式BC;④DE∥BC.
請(qǐng)你以其中的兩種說(shuō)法為條件(①和②不能同時(shí)作為條件),其余兩種說(shuō)法為結(jié)論,構(gòu)造一個(gè)命題;并判定你所構(gòu)造的命題是否正確.如果正確請(qǐng)說(shuō)明理由;如果不正確,請(qǐng)舉出反例.

查看答案和解析>>

同步練習(xí)冊(cè)答案