【題目】如圖,在△ABC中,ABAC, AD是△ABC 底邊BC上的中線,PAB上一點(diǎn).

1)在AD上找一點(diǎn)E,使得PE+EB的值最;

2)若PAB的中點(diǎn),當(dāng)∠BPE °時(shí),△ABC是等邊三角形.(直接寫出結(jié)果)

【答案】1)見(jiàn)解析;(290°

【解析】

1)根據(jù)等腰三角形三線合一的性質(zhì)可知AD垂直平分BC,再根據(jù)兩點(diǎn)間距離最短的性質(zhì),連接CPAD于點(diǎn)E,并連接BE,即可得到本題答案.
2)因?yàn)?/span>PAB的中點(diǎn),要使ABC是等邊三角形,則需BC=AB,根據(jù)等腰三角形三線合一的性質(zhì),所以CPAB,即∠BPE90°.

1)如圖,點(diǎn)E為所求.理由如下:

連接CPAD于點(diǎn)E,并連接BE

ABAC, AD是△ABC 底邊BC上的中線

ADBC,BD=CD

BE=CE

∵兩點(diǎn)間線段最短

PE+EB=PC

∴下圖中E點(diǎn)即為所求.

290°.理由如下:

∵△ABC是等邊三角形

BC=AB

PAB的中點(diǎn)

BP=AP

∴CP⊥AB

∴∠BPE90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(一)知識(shí)鏈接

若點(diǎn)MN在數(shù)軸上,且M,N代表的實(shí)數(shù)分別是ab,則線段MN的長(zhǎng)度可表示為 .

(二)解決問(wèn)題

如圖,將一個(gè)三角板放置在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,點(diǎn)B,C的坐標(biāo)分別為(-2,-4),(-4,0.

1)求點(diǎn)A的坐標(biāo)及直線AB的表達(dá)式;

2)若Px軸上一點(diǎn),且SABP=6,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線,分別相交于點(diǎn),且交直線于點(diǎn).

1)若,求的度數(shù);

2)若,,求直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖AD為△ABC的中線,分別以ABAC為一邊在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AEAB,AFAC,連接EF,∠EAF+BAC180°

1)如圖1,若∠ABE63°,∠BAC45°,求∠FAC的度數(shù);

2)如圖1請(qǐng)?zhí)骄烤段EF和線段AD有何數(shù)量關(guān)系?并證明你的結(jié)論;

3)如圖2,設(shè)EFAB于點(diǎn)G,交AC于點(diǎn)R,延長(zhǎng)FC,EB交于點(diǎn)M,若點(diǎn)G為線段EF的中點(diǎn),且∠BAE70°,請(qǐng)?zhí)骄俊?/span>ACB和∠CAF的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x時(shí),yx的增大而減。虎a+b+c0正確的有( 。

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.

(1)請(qǐng)值接寫出點(diǎn)A,B,C的坐標(biāo).

(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接BC,D,A,并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一元二次方程,有下列說(shuō)法:

,則方程必有一個(gè)根為1

若方程有兩個(gè)不相等的實(shí)根,則方程必有兩個(gè)不相等的實(shí)根;

是方程的一個(gè)根,則一定有成立;

是一元二次方程的根,則

其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與⊙O相離,OA于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線于點(diǎn)C,使得AB=AC.

1)求證:AB是⊙O的切線;

2)若PC=2,OA=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)組織學(xué)生到商場(chǎng)參加社會(huì)實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如表所示:

(1觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;

(2若商場(chǎng)計(jì)劃每天的銷售利潤(rùn)為3000元,則其單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案