【題目】如圖,在△ABC中,AB=AC, AD是△ABC 底邊BC上的中線,P為AB上一點(diǎn).
(1)在AD上找一點(diǎn)E,使得PE+EB的值最;
(2)若P為AB的中點(diǎn),當(dāng)∠BPE= °時(shí),△ABC是等邊三角形.(直接寫出結(jié)果)
【答案】(1)見(jiàn)解析;(2)90°
【解析】
(1)根據(jù)等腰三角形三線合一的性質(zhì)可知AD垂直平分BC,再根據(jù)兩點(diǎn)間距離最短的性質(zhì),連接CP交AD于點(diǎn)E,并連接BE,即可得到本題答案.
(2)因?yàn)?/span>P為AB的中點(diǎn),要使△ABC是等邊三角形,則需BC=AB,根據(jù)等腰三角形三線合一的性質(zhì),所以CP⊥AB,即∠BPE=90°.
(1)如圖,點(diǎn)E為所求.理由如下:
連接CP交AD于點(diǎn)E,并連接BE
∵AB=AC, AD是△ABC 底邊BC上的中線
∴AD⊥BC,且BD=CD
∴BE=CE
∵兩點(diǎn)間線段最短
∴PE+EB=PC
∴下圖中E點(diǎn)即為所求.
(2)90°.理由如下:
∵△ABC是等邊三角形
∴BC=AB
∵P為AB的中點(diǎn)
∴BP=AP
∴CP⊥AB
∴∠BPE=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(一)知識(shí)鏈接
若點(diǎn)M,N在數(shù)軸上,且M,N代表的實(shí)數(shù)分別是a,b,則線段MN的長(zhǎng)度可表示為 .
(二)解決問(wèn)題
如圖,將一個(gè)三角板放置在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,點(diǎn)B,C的坐標(biāo)分別為(-2,-4),(-4,0).
(1)求點(diǎn)A的坐標(biāo)及直線AB的表達(dá)式;
(2)若P是x軸上一點(diǎn),且S△ABP=6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,與,分別相交于點(diǎn),,且,交直線于點(diǎn).
(1)若,求的度數(shù);
(2)若,,,求直線與的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖AD為△ABC的中線,分別以AB和AC為一邊在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,連接EF,∠EAF+∠BAC=180°
(1)如圖1,若∠ABE=63°,∠BAC=45°,求∠FAC的度數(shù);
(2)如圖1請(qǐng)?zhí)骄烤段EF和線段AD有何數(shù)量關(guān)系?并證明你的結(jié)論;
(3)如圖2,設(shè)EF交AB于點(diǎn)G,交AC于點(diǎn)R,延長(zhǎng)FC,EB交于點(diǎn)M,若點(diǎn)G為線段EF的中點(diǎn),且∠BAE=70°,請(qǐng)?zhí)骄俊?/span>ACB和∠CAF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減。虎a+b+c>0正確的有( 。
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.
(1)請(qǐng)值接寫出點(diǎn)A,B,C的坐標(biāo).
(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B,C,D,A,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一元二次方程,有下列說(shuō)法:
①若,則方程必有一個(gè)根為1;
②若方程有兩個(gè)不相等的實(shí)根,則方程必有兩個(gè)不相等的實(shí)根;
③若是方程的一個(gè)根,則一定有成立;
④若是一元二次方程的根,則.
其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與⊙O相離,OA⊥于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線于點(diǎn)C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)若PC=2,OA=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)組織學(xué)生到商場(chǎng)參加社會(huì)實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如表所示:
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;
(2)若商場(chǎng)計(jì)劃每天的銷售利潤(rùn)為3000元,則其單價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com