【題目】如圖反映的是小華從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買筆,然后走回家,其中x表示時間,y表示小華離家的距離.根據(jù)圖像回答下列問題:
(1)小華在體育館鍛煉了_____分鐘;
(2)體育館離文具店______千米;
(3)小華從家跑步到體育館,從文具店散步回家的速度分別是多少千米/分鐘?
【答案】(1)15(2)1(3)小華從家跑步到體育場的速度是千米/分鐘,小華從文具店散步回家的速度為千米/分鐘
【解析】
(1)觀察函數(shù)圖象找出到達和離開體育館的時間,二者做差即可得出結(jié)論;
(2)觀察函數(shù)圖象找出體院館和文具店離家的距離,二者做差即可得出結(jié)論;
(3)根據(jù)速度=路程÷時間,即可分別算出小華從家跑步到體育場和從文具店散步回家的速度,此題得解.
(1)30-15=15(分鐘).
故答案為:15.
(2)2.5-1.5=1(千米).
故答案為:1.
(3)小華從家跑步到體育場的速度為:2.5÷15=(千米/分鐘);
小華從文具店散步回家的速度為:1.5÷(100-65)=(千米/分鐘).
答:小華從家跑步到體育場的速度是千米/分鐘,小華從文具店散步回家的速度為千米/分鐘.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點A(1,8),B(1,6),C(7,6).
(1)請直接寫出點D的坐標(biāo);
(2)連接線段OB,OD,BD,請求出△OBD的面積;
(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設(shè)運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1 , y1),P2(x2 , y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2= 他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:x= ,y= .
(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;
(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;
②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;
(3)如圖3,點P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D,E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°后,得到△ACF,連接DF,則下列結(jié)論中有( )個是正確的。
①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離家的距離s(千米)與時間t(時)之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:
①小李到達離家最遠的地方是14時;
②小李第一次休息時間是10時;
③11時到12時,小李騎了5千米;
④返回時,小李的平均速度是10千米/時.
其中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請把△ABC先向右移動5個單位,再向下移動3個單位得到△A′B′C′,在圖中畫出△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=51°,點P在∠MON的內(nèi)部,點D是邊ON上任意一點,點C是邊OM上任意一點,連接PD、PC,當(dāng)△PCD的周長最小時,∠CPD的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點B逆時針旋轉(zhuǎn)到△A′BC′的位置,點C′在AC上,A′C′與AB相交于點D,則C′D= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com