【題目】為了解某學(xué)校興趣小組活動(dòng)情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,按A:藝術(shù),B:科技,C:體育,D:其他四個(gè)項(xiàng)目進(jìn)行統(tǒng)計(jì),繪制了兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)本次接受問(wèn)卷調(diào)查的共有 人:在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若全校有2000人,請(qǐng)你估算一下全校喜歡藝術(shù)類(lèi)學(xué)生的人數(shù)有多少?
【答案】(1)100,10%;(2)72;(3)見(jiàn)解析;(4)全校有2000人中喜歡藝術(shù)類(lèi)學(xué)生的人數(shù)大約有400人.
【解析】
(1)從條形統(tǒng)計(jì)圖中可得C選項(xiàng)的人數(shù)為50人,扇形統(tǒng)計(jì)圖中可得這些人占整體的50%,可求調(diào)查人數(shù);D選項(xiàng)所占百分比即為D選項(xiàng)人數(shù)占調(diào)查人數(shù)的百分比;
(2)用B選項(xiàng)所占的百分比乘360°即可;
(3)計(jì)算出A選項(xiàng)的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;
(4)樣本估計(jì)總體,樣本中喜歡藝術(shù)占20%,于是總體中喜歡藝術(shù)也占20%,即可求出相應(yīng)的人數(shù).
解:(1)50÷50%=100人,10÷100=10%
故答案為100,10%.
(2)360°×=72°,
故答案為72.
(3)100﹣20﹣50﹣10=20人,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
(4)2000×=400人,
答:全校2000人中喜歡藝術(shù)類(lèi)學(xué)生的人數(shù)大約有400人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某學(xué)校學(xué)生的個(gè)性特長(zhǎng)發(fā)展情況,學(xué)校決定圍繞“音樂(lè)、體育、美術(shù)、書(shū)法、其它活動(dòng)項(xiàng)目中,你參加哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))的問(wèn)題”,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)在這次調(diào)查中一共抽查了多少名學(xué)生?
(2)求參加“音樂(lè)”活動(dòng)項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比.
(3)若全校有2400名學(xué)生,請(qǐng)估計(jì)該校參加“美術(shù)”活動(dòng)項(xiàng)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類(lèi)比探究:
(1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若AP=8,BP=15,CP=17,求∠APB的大。唬ㄌ崾荆簩ⅰABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處)
(2)如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn),且∠EAF=45°.求證:EF2=BE2+FC2;
(3)如圖3,在△ABC中,∠C=90°,∠ABC=30°,點(diǎn)O為△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車(chē)帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書(shū)沒(méi)帶,于是媽媽立即騎車(chē)原路回家拿書(shū)后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽?zhuān)僭O(shè)拿書(shū)時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過(guò)程中分別保持勻速.?huà)寢審?/span>C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線(xiàn)O-D-E-F表示y1與x的函數(shù)圖像;折線(xiàn)O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為 m/min,圖②中a的值為 .
(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.當(dāng)12≤x≤30時(shí),求出y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4),P 為線(xiàn)段 OA 上一動(dòng)點(diǎn),過(guò) O,P,B 三點(diǎn)的圓交 x 軸正半軸于點(diǎn) C,連結(jié) AB, PC,BC,設(shè) OP=m.
(1)求證:當(dāng) P 與 A 重合時(shí),四邊形 POCB 是矩形.
(2)連結(jié) PB,求 tan∠BPC 的值.
(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對(duì)邊平行時(shí),求所有滿(mǎn)足條件的 m 的值.
(4)作點(diǎn) O 關(guān)于 PC 的對(duì)稱(chēng)點(diǎn)O ,在點(diǎn) P 的整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)O 落在△APB 的內(nèi)部 (含邊界)時(shí),請(qǐng)寫(xiě)出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結(jié)果精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,DC與⊙O相切于點(diǎn)C,交AB的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)求證:∠BAC=∠BCD;
(2)若BD=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】齊齊哈爾市教育局想知道某校學(xué)生對(duì)扎龍自然保護(hù)區(qū)的了解程度,在該校隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷,問(wèn)卷有以下四個(gè)選項(xiàng):A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項(xiàng)).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次被抽取的學(xué)生共有_______名;
(2)請(qǐng)補(bǔ)全條形圖;
(3)扇形圖中的選項(xiàng)“C.了解較少”部分所占扇形的圓心角的大小為_______°;
(4)若該校共有名學(xué)生,請(qǐng)你根據(jù)上述調(diào)查結(jié)果估計(jì)該校對(duì)于扎龍自然保護(hù)區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求此拋物線(xiàn)的解析式;
(2)若點(diǎn)P是直線(xiàn)BC下方的拋物線(xiàn)上一動(dòng)點(diǎn)(不點(diǎn)B,C重合),過(guò)點(diǎn)P作y軸的平行線(xiàn)交直線(xiàn)BC于點(diǎn)D,求PD的長(zhǎng)度最大時(shí)點(diǎn)P的坐標(biāo).
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與BC交于點(diǎn)E,點(diǎn)M是拋物線(xiàn)的對(duì)稱(chēng)軸上一點(diǎn),N為y軸上一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)C、E、M、N為頂點(diǎn)的四邊形是菱形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com