A. | ∠ABD=∠C | B. | ∠ADB=∠ABC | C. | CB2=CD•CA | D. | AB2=AD•AC |
分析 由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.
解答 解:∵∠A是公共角,
∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似);
故A與B正確;
當$\frac{AD}{AB}$=$\frac{AB}{AC}$時,即AB2=AD•AC,則△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似);
故D正確;
當$\frac{CB}{CD}$=$\frac{AC}{BC}$時,∠A不是夾角,故不能判定△ADB與△ABC相似,
故C錯誤.
故選C.
點評 此題考查了相似三角形的判定.此題難度不大,注意掌握有兩角對應(yīng)相等的三角形相似與兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似定理的應(yīng)用.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$-2 | B. | 2-$\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | -2.5 | C. | $\sqrt{5}$ | D. | $-\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com