【題目】如圖,等邊 的邊 軸交于點(diǎn) ,點(diǎn) 是反比例函數(shù) 圖像上一點(diǎn),若 邊的三等分點(diǎn)時(shí),則等邊 的邊長(zhǎng)為

【答案】.
【解析】解:作OD⊥AB交AB于點(diǎn)D,作AE⊥y軸交y軸于點(diǎn)E,作BF⊥x軸交x軸于點(diǎn)F,設(shè)等邊 △OAB的邊長(zhǎng)為a,
①∵若C為AB邊的三等分點(diǎn),
∴當(dāng)AC=AB時(shí),
∴OD=a,AD=a,
∴CD=AD-AC=a-a=a,
在Rt△OCD中,
∴OC==a,
又∵S△OAB=S△OAC+S△OBC,
a2=·OC·(AE+BF),
∴AE+BF=a,
又∵∠AEC=∠BFC,∠ACE=∠BCF,
∴△AEC∽△BFC,
==
∴AE=a,
∵A在反比例函數(shù)解析式上,
∴A(,),
在Rt△AEO中,
∴AE2+OE2=AO2,
∴(a)2+(2=a2
∴a=2.
②∵若C為AB邊的三等分點(diǎn),
∴當(dāng)AC=AB時(shí),
∴OD=a,AD=a,
∴CD=AC-AD=a-a=a,
在Rt△OCD中,
∴OC==a,
又∵S△OAB=S△OAC+S△OBC,
a2=·OC·(AE+BF),
∴AE+BF=a,
又∵∠AEC=∠BFC,∠ACE=∠BCF,
∴△AEC∽△BFC,
==2,
AE=a,
∵A在反比例函數(shù)解析式上,
∴A(,),
在Rt△AEO中,
∴AE2+OE2=AO2,
a)2+(2=a2
∴a=.
【考點(diǎn)精析】本題主要考查了三角形的面積和等邊三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握三角形的面積=1/2×底×高;等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題不正確的是( )
A.0是整式
B.x=0是一元一次方程
C.(x+1)(x﹣1)=x2+x是一元二次方程
D. 是二次根式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣城要鋪一條自來水管道,決定由甲、乙兩個(gè)工程隊(duì)來完成這一工程,已知甲工程隊(duì)比乙工程隊(duì)每天多鋪10m,且甲工程隊(duì)鋪設(shè)350m所用的天數(shù)與乙工程隊(duì)鋪設(shè)250m所用的天數(shù)相同甲、乙兩個(gè)工程隊(duì)每天各能鋪設(shè)多少米管道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AD⊥BC于點(diǎn)DAM是△ABC的外角∠CAE的平分線.

(1)求證:AM∥BC;

(2)若DN平分∠ADC交AM于點(diǎn)N,判斷△ADN的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=3,CDEF,試說明∠1=4.請(qǐng)將過程填寫完整.

解:∵∠1=3,

又∠2=3(_______)

∴∠1=____,

____________(_______)

又∵CDEF,

AB_____

∴∠1=4(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】摩拜單車公司調(diào)查無錫市民對(duì)其產(chǎn)品的了解情況,隨機(jī)抽取部分市民進(jìn)行問卷,結(jié)果分非常了解、比較了解、一般了解、不了解四種類型,分別記為、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

1)本次問卷共隨機(jī)調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中 .

2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖.

3扇形統(tǒng)計(jì)圖中“D類型所對(duì)應(yīng)的圓心角的度數(shù)是 .

4從這次接受調(diào)查的市民中隨機(jī)抽查一個(gè),恰好是不了解的概率是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CE平分∠BCD,1=2=70°,3=40°,ABCD是否平行?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的說理過程補(bǔ)充完整

已知如圖,DEBC,ADE=∠EFC,求證∠1=∠2

證明DEBC(已知)

∴∠ADE= ( 。

∵∠ADE=∠EFC(已知)

= ( 。

DBEF ( 。

∴∠1=∠2 (  )

查看答案和解析>>

同步練習(xí)冊(cè)答案