【題目】如圖所示,一元二次方程x2+2x-3=0的兩根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)C,B的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6)
(1)求此拋物線的函數(shù)解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC交于點(diǎn)Q,求點(diǎn)P,Q的坐標(biāo).
(3)在x軸上是否存在以動(dòng)點(diǎn)M,使MQ+MA有最小值,若存在求出點(diǎn)M的坐標(biāo)和最小值,若不存在,請(qǐng)說明理由.
【答案】(1);(2)P(﹣1,﹣2),Q(﹣1,2);(3)存在,MQ+MA的最小值為.
【解析】
(1)先求解方程x2+2x-3=0,得到B,C兩點(diǎn)坐標(biāo),再設(shè)出拋物線的解析式為y=a(x+3)(x﹣1),再將點(diǎn)A(3,6)代入求解即可;
(2)將拋物線解析式化為頂點(diǎn)式得到P點(diǎn)坐標(biāo),設(shè)直線AC的解析式為y=kx+b,將A,C兩點(diǎn)坐標(biāo)代入得到直線AC的解析式,然后即可求得Q點(diǎn)坐標(biāo);
(3)連接AP,與x軸的交點(diǎn)即為所求點(diǎn)M,連接QM,根據(jù)點(diǎn)P,Q關(guān)于x軸對(duì)稱,可得此時(shí)QM+AM=PM+AM為最小值,設(shè)直線AP的解析式為y=ax+c,利用待定系數(shù)法求求得直線AP的解析式,得到M點(diǎn)坐標(biāo)為(0,0),過點(diǎn)A向PQ作垂線,垂足為H,在Rt△AHP中,利用勾股定理即可求得PA的值.
解:(1)解方程x2+2x-3=0,得x1=﹣3,x2=1,
∴交點(diǎn)C(﹣3,0),B(1,0),
設(shè)拋物線解析式為y=a(x+3)(x﹣1),
∵點(diǎn)A(3,6)在拋物線上,
∴解得a=,
則拋物線的函數(shù)解析式為;
(2)∵,
∴頂點(diǎn)P的坐標(biāo)為(﹣1,﹣2),對(duì)稱軸為直線x=﹣1,
設(shè)直線AC的解析式為y=kx+b,
∵A(3,6),C(﹣3,0)在直線AC上,
∴,
解得:k=1,b=3,
∴直線AC的解析式為:y=x+3,
當(dāng)x=﹣1時(shí),y=﹣1+3=2,
∴Q點(diǎn)坐標(biāo)為(﹣1,2);
(3)存在,理由如下,
∵點(diǎn)P與點(diǎn)Q橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),
∴點(diǎn)P,Q關(guān)于x軸對(duì)稱,
∴連接AP,與x軸的交點(diǎn)即為所求點(diǎn)M,連接QM,
∴QM=PM,
∴QM+AM=PM+AM,
設(shè)直線AP的解析式為y=ax+c,
將A(3,6),P(﹣1,﹣2)代入y=ax+c得:
,
解得得a=2,c=0,
∴y=2x,
令y=0,則x=0,
∴點(diǎn)M的坐標(biāo)為(0,0),
過點(diǎn)A向PQ作垂線,垂足為H,
則AH=4,PH=8,
在Rt△AHP中,,
∴MQ+MA=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,正確的個(gè)數(shù)為
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+mx的對(duì)稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0 (t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,兩個(gè)完全相同的三角形紙片 ABC 和 DEC 重合放置,其中∠C=90°,∠B=∠E=30°.
⑴ 操作發(fā)現(xiàn):如圖 2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落在 AB 邊上時(shí), 填空:
①線段 DE 與 AC 的位置關(guān)系是 ;
②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,則 S1 與 S2 的數(shù)量關(guān)系是 .
⑵ 猜想論證
當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),請(qǐng)猜想(1)中 S1 與 S2 的數(shù)量關(guān)系是否仍 然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
⑶ 拓展探究
已知∠ABC=60°,BD 平分∠ABC,BD=CD,BE=6,DE∥AB 交 BC 于點(diǎn) E(如圖 4).若在射線 BA 上存在點(diǎn) F,使 S△DCF=S△BDE,請(qǐng)求相應(yīng)的 BF 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),∠ADE=60°
(1)求證:△ABD∽△DCE;
(2)若BD=4,CE=,求△ABC的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對(duì)折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):
當(dāng)a>0,b>0時(shí):
∵()2=a﹣2+b≥0
∴a+b≥2,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).
請(qǐng)利用上述結(jié)論解決以下問題:
(1)請(qǐng)直接寫出答案:當(dāng)x>0時(shí),x+的最小值為 .當(dāng)x<0時(shí),x+的最大值為 ;
(2)若y=,(x>﹣1),求y的最小值;
(3)如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識(shí),估測(cè)景區(qū)里的觀景塔的高度,他從點(diǎn)處的觀景塔出來走到點(diǎn)處.沿著斜坡從點(diǎn)走了米到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉.在點(diǎn)觀察到觀景塔頂端的仰角為且,再往前走到處,觀察到觀景塔頂端的仰角,測(cè)得之間的水平距離米,則觀景塔的高度約為( ) 米. ()
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com