A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 ①由等邊三角形的性質(zhì)得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可證出△ABE≌△DBC;
②由△ABE≌△DBC,得出∠BAE=∠BDC,根據(jù)三角形外角的性質(zhì)得出∠DMA=60°;
③由ASA證明△ABP≌△DBQ,得出對(duì)應(yīng)邊相等BP=BQ,即可得出△BPQ為等邊三角形;
④推出△BPQ是等邊三角形,得到∠PBQ=60°,根據(jù)平行線的性質(zhì)即可得到PQ∥AC,故④正確.
解答 解:∵△ABD、△BCE為等邊三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBQ=60°,
在△ABE和△DBC中,
∵$\left\{\begin{array}{l}AB=DB\\∠ABE=∠DBC\\ BE=BC\end{array}\right.$,
∴△ABE≌△DBC(SAS),
∴①正確;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°-60°-60°=60°,
∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,
∴②正確;
在△ABP和△DBQ中,
∵$\left\{\begin{array}{l}∠BAP=∠BDQ\\ AB=DB\\∠ABP=∠DBQ=60°\end{array}\right.$,
∴△ABP≌△DBQ(ASA),
∴BP=BQ,
∴△BPQ為等邊三角形,
∴③正確;
∵BP=BQ,∠PBQ=60°,
∴△BPQ是等邊三角形,
∴∠PQB=60°,
∴∠PQB=∠QBC,
∴PQ∥AC,
故④正確.
故選D.
點(diǎn)評(píng) 此題考查了等邊三角形的判定與性質(zhì)與全等三角形的判定與性質(zhì),平行線的判定和性質(zhì),此題圖形比較復(fù)雜,解題的關(guān)鍵是仔細(xì)識(shí)圖,找準(zhǔn)全等的三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 30 | C. | 32 | D. | 42 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 互余 | B. | 互補(bǔ) | C. | 相等 | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠1=∠C | B. | ∠A=∠C | C. | ∠2=∠B | D. | $\frac{AD}{AC}=\frac{AE}{AB}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com