精英家教網 > 初中數學 > 題目詳情

【題目】數據5,2,3,5,5,1,3的眾數和中位數分別是( 。

A. 5,4 B. 3,5 C. 5,5 D. 5,3

【答案】D

【解析】分析:如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數. 一組數據中出現次數最多的數據叫做眾數.

詳解:∵5出現了3次,出現的次數最多,

∴眾數是5;

∵從小到大排列后是:1,2,3,3,5,5,5,排在中間的數是3,

∴中位數是5.

故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某車隊要把4000噸貨物運到雅安地震災區(qū)(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸的貨物噸數n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數關系式?
(2)因地震,到災區(qū)的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務,求原計劃完成任務的天數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設ω是一個平面圖形,如果用直尺和圓規(guī)經過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉化稱為ω的“化方”.

(1)閱讀填空

如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH.

∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH與矩形ABCD等積.

(2)操作實踐

平行四邊形的“化方”思路是,先把平行四邊形轉化為等積的矩形,再把矩形轉化為等積的正方形.

如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

(3)解決問題三角形的“化方”思路是:先把三角形轉化為等積的 (填寫圖形名稱),再轉化為等積的正方形.

如圖③,△ABC的頂點在正方形網格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).

(4)拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉化為等積的n﹣1邊形,…,直至轉化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點在正方形網格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分解因式:2x2-12xy+18y2=__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.

(1)四邊形ABEF是 ;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)

(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 ,∠ABC= °.(直接填寫結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】動點A從原點出發(fā)向數軸負方向運動,同時,動點B也從原點出發(fā)向數軸正方向運動,3秒后,兩點相距15個單位長度.已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個動點運動的速度;
(2)若A、B兩點從(1)中的位置同時向數軸負方向運動,幾秒后原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續(xù)同時向數軸負方向運動時,另一動點C同時從B點位置出發(fā)向A運動,當遇到A后,立即返回向B點運動,遇到B點后立即返回向A點運動,如此往返,直到B追上A時,C立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始到停止運動,運動的路程是多少單位長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃用這兩種原料全部生產A、B兩種產品共50件,生產A、B兩種產品與所需原料情況如下表所示:

(1)該工廠生產A、B兩種產品有哪幾種方案?

(2)若生成一件A產品可獲利80元,生產一件B產品可獲利120元,怎樣安排生產可獲得最大利潤?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】倡導健康生活,推進全民健身,某社區(qū)要購進A,B兩種型號的健身器材若干套,A,B兩種型號健身器材的購買單價分別為每套310元,460元,且每種型號健身器材必須整套購買.

(1)若購買A,B兩種型號的健身器材共50套,且恰好支出20000元,求A,B兩種型號健身器材各購買多少套?

(2)若購買A,B兩種型號的健身器材共50套,且支出不超過18000元,求A種型號健身器材至少要購買多少套?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一組數據:01,2,﹣1,3的極差是_____

查看答案和解析>>

同步練習冊答案