精英家教網 > 初中數學 > 題目詳情
(2008•遼寧)如圖,某數學興趣小組在活動課上測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,看旗桿頂部M的仰角為30度.兩人相距28米且位于旗桿兩側(點B,N,D在同一條直線上).請求出旗桿MN的高度.(參考數據:≈1.4,≈1.7,結果保留整數)

【答案】分析:首先分析圖形:根據題意構造直角三角形;本題涉及到兩個直角三角形,應利用其公共邊構造三角關系,進而可求出答案.
解答:解:過點A作AE⊥MN于E,過點C作CF⊥MN于F,
則EF=AB-CD=1.7-1.5=0.2,
在Rt△AEM中,∠AEM=90°,∠MAE=45°,
故AE=ME,
設AE=ME=x,
則MF=x+0.2,FC=28-x,
在Rt△MFC中,∠MFC=90°,∠MCF=30°,
x+0.2=(28-x),
則x=,
所以MN=ME+EF+FN=AE+CD+EF=+0.2+1.5≈12米.
答:旗桿的高度約為12米.
點評:本題考查了解直角三角形的問題.該題是一個比較常規(guī)的解直角三角形問題,建立模型比較簡單,但求解過程中涉及到根式和小數,算起來麻煩一些.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《圓》(05)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,橫坐標為整數的點P有    個.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最。咳舸嬖,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《平面直角坐標系》(02)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,橫坐標為整數的點P有    個.

查看答案和解析>>

科目:初中數學 來源:2010年福建省莆田市中考數學仿真模擬試卷(三)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年遼寧省十二市中考數學試卷(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案