如圖,在平面直角坐標(biāo)系中,直角梯形的邊落在軸的正半軸上,且,,=4,=6,=8.正方形的兩邊分別落在坐標(biāo)軸上,且它的面積等于直角梯形面積。將正方形沿軸的正半軸平行移動(dòng),設(shè)它與直角梯形的重疊部分面積為。

(1)分析與計(jì)算:

求正方形的邊長(zhǎng);

(2)操作與求解:

①正方形平行移動(dòng)過(guò)程中,通過(guò)操作、觀(guān)察,試判斷>0)的變化情況是      

A.逐漸增大   B.逐漸減少   C.先增大后減少  D.先減少后增大

②當(dāng)正方形頂點(diǎn)移動(dòng)到點(diǎn)時(shí),求的值;

(3)探究與歸納:

 
設(shè)正方形的頂點(diǎn)向右移動(dòng)的距離為,求重疊部分面積的函數(shù)關(guān)系式。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 。 ………(8分)

 ④當(dāng)8≤<10時(shí),重疊部分為五邊形,如圖④,

 = …….(9分)

⑤當(dāng)10≤≤14時(shí),重疊部分為矩形,如圖⑤,…….(10分)

 

 

 

 

 

 


解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案